18 research outputs found

    Restore or Redefine:Future Trajectories for Restoration

    Get PDF
    Global habitat deterioration of marine ecosystems has led to a need for active interventions to halt or reverse the loss of ecological function. Restoration has historically been a key tool to reverse habitat loss and restore functions, but the extent to which this will be sufficient under future climates is uncertain. Emerging genetic technologies now provide the ability for restoration to proactively match adaptability of target species to predicted future environmental conditions, which opens up the possibility of boosting resistance to future stress in degraded and threatened habitats. As such, the choice of whether to restore to historical baselines or anticipate the future remains a key decision that will influence restoration success in the face of environmental and climate change. Here, we present an overview of the different motives for restoration – to recover or revive lost or degraded habitats to extant or historical states, or to reinforce or redefine for future conditions. We focus on the genetic and adaptive choices that underpin each option and subsequent consequences for restoration success. These options span a range of possible trajectories, technological advances and societal acceptability, and represent a framework for progressing restoration of marine habitat forming species into the future

    Upscaling marine forest restoration: challenges, solutions and recommendations from the Green Gravel Action Group

    Get PDF
    IntroductionTo counteract the rapid loss of marine forests globally and meet international commitments of the UN Decade on Ecosystem Restoration and the Convention on Biological Diversity ‘30 by 30’ targets, there is an urgent need to enhance our capacity for macroalgal restoration. The Green Gravel Action Group (GGAG) is a global network of 67 members that are working on the restoration of a diverse range of macroalgal forests and it aims to facilitate knowledge exchange to fast-track innovation and implementation of outplanting approaches worldwide. MethodsHere, we overview 25 projects conducted by members of the group that are focused on testing and developing techniques for macroalgal restoration. Based on these projects, we summarise the major challenges associated with scaling up the area of marine forests restored. ResultsWe identify several critical challenges that currently impede more widespread rollout of effective large-scale macroalgal restoration worldwide: 1) funding and capacity limitations, 2) difficulties arising from conditions at restoration sites, 3) technical barriers, and 4) challenges at the restoration-policy interface. DiscussionDespite these challenges, there has been substantial progress, with an increasing number of efforts, community engagement and momentum towards scaling up activities in recent years. Drawing on the collective expertise of the GGAG, we outline key recommendations for the scaling up of restoration efforts to match the goals of international commitments. These include the establishment of novel pathways to fund macroalgal restoration activities, building skills and capacity, harnessing emerging innovations in mobile hatchery and seeding technologies, and the development of the scientific and governance frameworks necessary to implement and monitor macroalgal restoration projects at scale

    Adjunctive rifampicin for Staphylococcus aureus bacteraemia (ARREST): a multicentre, randomised, double-blind, placebo-controlled trial.

    Get PDF
    BACKGROUND: Staphylococcus aureus bacteraemia is a common cause of severe community-acquired and hospital-acquired infection worldwide. We tested the hypothesis that adjunctive rifampicin would reduce bacteriologically confirmed treatment failure or disease recurrence, or death, by enhancing early S aureus killing, sterilising infected foci and blood faster, and reducing risks of dissemination and metastatic infection. METHODS: In this multicentre, randomised, double-blind, placebo-controlled trial, adults (≥18 years) with S aureus bacteraemia who had received ≤96 h of active antibiotic therapy were recruited from 29 UK hospitals. Patients were randomly assigned (1:1) via a computer-generated sequential randomisation list to receive 2 weeks of adjunctive rifampicin (600 mg or 900 mg per day according to weight, oral or intravenous) versus identical placebo, together with standard antibiotic therapy. Randomisation was stratified by centre. Patients, investigators, and those caring for the patients were masked to group allocation. The primary outcome was time to bacteriologically confirmed treatment failure or disease recurrence, or death (all-cause), from randomisation to 12 weeks, adjudicated by an independent review committee masked to the treatment. Analysis was intention to treat. This trial was registered, number ISRCTN37666216, and is closed to new participants. FINDINGS: Between Dec 10, 2012, and Oct 25, 2016, 758 eligible participants were randomly assigned: 370 to rifampicin and 388 to placebo. 485 (64%) participants had community-acquired S aureus infections, and 132 (17%) had nosocomial S aureus infections. 47 (6%) had meticillin-resistant infections. 301 (40%) participants had an initial deep infection focus. Standard antibiotics were given for 29 (IQR 18-45) days; 619 (82%) participants received flucloxacillin. By week 12, 62 (17%) of participants who received rifampicin versus 71 (18%) who received placebo experienced treatment failure or disease recurrence, or died (absolute risk difference -1·4%, 95% CI -7·0 to 4·3; hazard ratio 0·96, 0·68-1·35, p=0·81). From randomisation to 12 weeks, no evidence of differences in serious (p=0·17) or grade 3-4 (p=0·36) adverse events were observed; however, 63 (17%) participants in the rifampicin group versus 39 (10%) in the placebo group had antibiotic or trial drug-modifying adverse events (p=0·004), and 24 (6%) versus six (2%) had drug interactions (p=0·0005). INTERPRETATION: Adjunctive rifampicin provided no overall benefit over standard antibiotic therapy in adults with S aureus bacteraemia. FUNDING: UK National Institute for Health Research Health Technology Assessment

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Morphology of Ecklonia radiata (Phaeophyta : Laminarales) along its geographic distribution in south-western Australia and Australasia

    No full text
    Ecklonia radiata (C. Ag.) J. Agardh is a common macroalga on reefs in the warm-temperate parts of the southern hemisphere. It is a dominant habitat-former and as such has a strong structuring effect on associated algal assemblages. Morphological variation in E. radiata potentially affects its interactions with the surroundings and contributes to confusion about its taxonomy. We quantified the magnitude of morphological variation in fully developed E. radiata sporophytes across Australasia and tested the hypotheses that E. radiata has different morphology at different locations and that the degree of morphological difference depends on spatial distances among locations. A total of 11 morphological characters were sampled from 11 locations along the Australian coastline from Kalbarri in Western Australia to Sydney in New South Wales as well as from Doubtful Sound, New Zealand. Most morphological characters varied considerably from one location to another. For example, the average (±SE) thallus length was 135.2±12.5 cm in Kalbarri and only 69.7±5.5 cm in Sydney. There were no consistent spatial patterns of variation among individual morphological characters, and, generally, variations among individual characters were poorly correlated (−0.5<R<0.5). This suggests that individual morphological characters develop independently of each other in response to processes operating at different spatial scales. Multivariate measures of morphology were found to be different among some locations and similar among others (−0.37≤Clarke's R≤1), but there was no correlation (Spearman's R=0.08) between morphological similarity and distance between locations. Consequently, our results do not support clinal variation in E. radiata morphology. Rather, they suggest the presence of discrete morphologically different populations, in which the morphology at any one location reflects multiple forcing factors operating on different morphological characters at different spatial scales.T. Wernberg, M. Coleman, A. Fairhead, S. Miller and M. Thomse

    Priming of marine macrophytes for enhanced restoration success and food security in future oceans

    Get PDF
    Marine macrophytes, including seagrasses and macroalgae, form the basis of diverse and productive coastal ecosystems that deliver important ecosystem services. Moreover, western countries increasingly recognize macroalgae, traditionally cultivated in Asia, as targets for a new bio-economy that can be both economically profitable and environmentally sustainable. However, seagrass meadows and macroalgal forests are threatened by a variety of anthropogenic stressors. Most notably, rising temperatures and marine heatwaves are already devastating these ecosystems around the globe, and are likely to compromise profitability and production security of macroalgal farming in the near future. Recent studies show that seagrass and macroalgae can become less susceptible to heat events once they have been primed with heat stress. Priming is a common technique in crop agriculture in which plants acquire a stress memory that enhances performance under a second stress exposure. Molecular mechanisms underlying thermal priming are likely to include epigenetic mechanisms that switch state and permanently trigger stress-preventive genes after the first stress exposure. Priming may have considerable potential for both ecosystem restoration and macroalgae farming to immediately improve performance and stress resistance and, thus, to enhance restoration success and production security under environmental challenges. However, priming methodology cannot be simply transferred from terrestrial crops to marine macrophytes. We present first insights into the formation of stress memories in both seagrasses and macroalgae, and research gaps that need to be filled before priming can be established as new bio-engineering technique in these ecologically and economically important marine primary producers.publishedVersio

    Genotype-environment mismatch of kelp forests under climate change.

    No full text
    Climate change is increasingly impacting ecosystems globally. Understanding adaptive genetic diversity and whether it will keep pace with projected climatic change is necessary to assess species' vulnerability and design efficient mitigation strategies such as assisted adaptation. Kelp forests are the foundations of temperate reefs globally but are declining in many regions due to climate stress. A lack of knowledge of kelps' adaptive genetic diversity hinders assessment of vulnerability under extant and future climates. Using 4245 single nucleotide polymorphisms (SNPs), we characterised patterns of neutral and putative adaptive genetic diversity for the dominant kelp in the southern hemisphere (Ecklonia radiata) from ~1000 km coastline off Western Australia. Strong population structure and isolation-by-distance was underpinned by significant signatures of selection related to temperature and light. Gradient forest analysis of temperature-linked SNPs under selection revealed a strong association with mean annual temperature range suggesting adaptation to local thermal environments. Critically, modelling revealed that predicted climate-mediated temperature changes will likely result in high genomic vulnerability via a mismatch between current and future predicted genotype-environment relationships such that kelp forests off Western Australia will need to significantly adapt to keep pace with projected climate change. Proactive management techniques such as assisted adaptation to boost resilience may be required to secure the future of these kelp forests and the immense ecological and economic values they support

    Priming of marine macrophytes for enhanced restoration success and food security in future oceans

    Get PDF
    Marine macrophytes, including seagrasses and macroalgae, form the basis of diverse and productive coastal ecosystems that deliver important ecosystem services. Moreover, western countries increasingly recognize macroalgae, traditionally cultivated in Asia, as targets for a new bio-economy that can be both economically profitable and environmentally sustainable. However, seagrass meadows and macroalgal forests are threatened by a variety of anthropogenic stressors. Most notably, rising temperatures and marine heatwaves are already devastating these ecosystems around the globe, and are likely to compromise profitability and production security of macroalgal farming in the near future. Recent studies show that seagrass and macroalgae can become less susceptible to heat events once they have been primed with heat stress. Priming is a common technique in crop agriculture in which plants acquire a stress memory that enhances performance under a second stress exposure. Molecular mechanisms underlying thermal priming are likely to include epigenetic mechanisms that switch state and permanently trigger stress-preventive genes after the first stress exposure. Priming may have considerable potential for both ecosystem restoration and macroalgae farming to immediately improve performance and stress resistance and, thus, to enhance restoration success and production security under environmental challenges. However, priming methodology cannot be simply transferred from terrestrial crops to marine macrophytes. We present first insights into the formation of stress memories in both seagrasses and macroalgae, and research gaps that need to be filled before priming can be established as new bio-engineering technique in these ecologically and economically important marine primary producers

    Financial and Institutional Support Are Important for Large-Scale Kelp Forest Restoration

    Get PDF
    Kelps form extensive underwater forests that underpin valuable ecosystem goods and services in temperate and polar rocky coastlines globally. Stressors, such as ocean warming and pollution are causing regional declines of kelp forests and their associated services worldwide. Kelp forest restoration is becoming a prominent management intervention, but we have little understanding of what drives restoration success at appropriate spatial scales. Though most restoration guidelines stress the importance of planning, stressor mitigation and ecological knowledge, other factors, such as lack of resources or institutional support are rarely discussed despite being potentially critical to achieving desired restoration outcomes. In this paper, we work to understand the importance of finances and institutions in the context of four of the world’s largest kelp restoration projects. These projects span four countries, six kelp genera and were initiated in response to different causes of decline. We argue that to restore kelp at desired scales, adequate financing, and institutional support are critical to overcome ecological and environmental limitations. Acknowledging limitations, we outline ways to mobilize resources and encourage institutions to support kelp restoration.publishedVersio

    Financial and Institutional Support Are Important for Large-Scale Kelp Forest Restoration

    No full text
    Kelps form extensive underwater forests that underpin valuable ecosystem goods and services in temperate and polar rocky coastlines globally. Stressors, such as ocean warming and pollution are causing regional declines of kelp forests and their associated services worldwide. Kelp forest restoration is becoming a prominent management intervention, but we have little understanding of what drives restoration success at appropriate spatial scales. Though most restoration guidelines stress the importance of planning, stressor mitigation and ecological knowledge, other factors, such as lack of resources or institutional support are rarely discussed despite being potentially critical to achieving desired restoration outcomes. In this paper, we work to understand the importance of finances and institutions in the context of four of the world’s largest kelp restoration projects. These projects span four countries, six kelp genera and were initiated in response to different causes of decline. We argue that to restore kelp at desired scales, adequate financing, and institutional support are critical to overcome ecological and environmental limitations. Acknowledging limitations, we outline ways to mobilize resources and encourage institutions to support kelp restoration
    corecore