352 research outputs found
Community Supported Agriculture in the urban fringe: empirical evidence for project potentiality in the metropolitan area of Naples (Italy)
Urbanisation of city-side areas effects on farm land use and organisation are analysed in this study with the objective of seeking the most effective way to implement a Community Supported Agriculture (CSA) scheme. Specifically, we used a theoretical framework to describe and assess the relationships between urbanisation and changes in farm-styles in the city belt. Our analysis is based on a case study in the protected area of the Campi Flegrei Regional Park situated in the north-western part of the Neapolitan metropolitan area, which is a peri-urban rural area with severe environmental management problems. Our results from the empirical analysis allowed us to distinguish the farms of the area into three behavioural-social groups on the basis of specific features, in order to identify the best suited type of farm for the strategic implementation of the CSA. A market scenario was predicted for each of them without any intervention
Reciprocal regulation of metabolic and signaling pathways
<p>Abstract</p> <p>Background</p> <p>By studying genome-wide expression patterns in healthy and diseased tissues across a wide range of pathophysiological conditions, DNA microarrays have revealed unique insights into complex diseases. However, the high-dimensionality of microarray data makes interpretation of heterogeneous gene expression studies inherently difficult.</p> <p>Results</p> <p>Using a large-scale analysis of more than 40 microarray studies encompassing ~2400 mammalian tissue samples, we identified a common theme across heterogeneous microarray studies evident by a robust genome-wide inverse regulation of metabolic and cell signaling pathways: We found that upregulation of cell signaling pathways was invariably accompanied by downregulation of cell metabolic transcriptional activity (and vice versa). Several findings suggest that this characteristic gene expression pattern represents a new principle of mammalian transcriptional regulation. First, this coordinated transcriptional pattern occurred in a wide variety of physiological and pathophysiological conditions and was identified across all 20 human and animal tissue types examined. Second, the differences in metabolic gene expression predicted the magnitude of differences for signaling and all other pathways, i.e. tissue samples with similar expression levels of metabolic transcripts did not show any differences in gene expression for all other pathways. Third, this transcriptional pattern predicted a profound effect on the proteome, evident by differences in structure, stability and post-translational modifications of proteins belonging to signaling and metabolic pathways, respectively.</p> <p>Conclusions</p> <p>Our data suggest that in a wide range of physiological and pathophysiological conditions, gene expression changes exhibit a recurring pattern along a transcriptional axis, characterized by an inverse regulation of major metabolic and cell signaling pathways. Given its widespread occurrence and its predicted effects on protein structure, protein stability and post-translational modifications, we propose a new principle for transcriptional regulation in mammalian biology.</p
Composite risk and benefit from adjuvant dose-dense chemotherapy in hormone receptor-positive breast cancer
The GIM2 phase III trial demonstrated the benefit of dose-dense chemotherapy in node-positive early breast cancer (eBC). To better define the dose-dense effect in the hormone receptor-positive subgroup, we evaluated its benefit through a composite measure of recurrence risk. We conducted an ancillary analysis of the GIM2 trial evaluating the absolute treatment effect through a composite measure of recurrence risk (CPRS) in patients with hormone receptor-positive HER2-negative eBC. CPRS was estimated through Cox proportional hazards models applied to the different clinicopathological features. The treatment effect was compared to the values of CPRS by using the Sub-population Treatment Effect Pattern Plot (STEPP) process. The Disease-Free Survival (DFS)-oriented STEPP analysis showed distinct patterns of relative treatment effect with respect to CPRS. Overall, 5-year DFS differed across CPRS quartiles ranging from 95.2 to 66.4%. Each CPRS quartile was characterized by a different patients\u2019 composition, especially for age, lymph node involvement, tumor size, estrogen and progesterone receptor expression, and Ki-67. A number needed to treat of 154 and 6 was associated with the lowest and the highest CPRS quartile, respectively. Dose-dense adjuvant chemotherapy showed a consistent benefit in node-positive eBC patients with hormone receptor-positive HER2-negative disease, but its effect varied according to CPRS
BRCA1 and BRCA2 mutations in central and southern Italian patients.
Protein truncation test (PTT) and single-strand conformation polymorphism (SSCP) assay were used to scan the BRCA1 and BRCA2 genes in 136 unrelated Italian breast/ovarian cancer patients. In the sample tested, BRCA1 and BRCA2 equally contributed to site-specific breast cancer patients who reported one to two breast cancer-affected first-/ second-degree relative(s) or who were diagnosed before age 40 years in the absence of a family history of breast/ovarian cancer. BRCA1 and BRCA2 mutations were mostly found in patients with disease diagnosis before and after age 50 years, respectively. Moreover, in cases with familial clustering of site-specific breast cancer, BRCA1 mostly accounted for tumours diagnosed before age 40 years and BRCA2 for tumours diagnosed after age 50 years. The BRCA1 and BRCA2 mutation spectrum was consistent with a lack of significant founder effects in the sample of patients studied
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Sugar Overconsumption during Adolescence Selectively Alters Motivation and Reward Function in Adult Rats
International audienceBACKGROUND:There has been a dramatic escalation in sugar intake in the last few decades, most strikingly observed in the adolescent population. Sugar overconsumption has been associated with several adverse health consequences, including obesity and diabetes. Very little is known, however, about the impact of sugar overconsumption on mental health in general, and on reward-related behavioral disorders in particular. This study examined in rats the effects of unlimited access to sucrose during adolescence on the motivation for natural and pharmacological rewards in adulthood.METHODOLOGY/PRINCIPAL FINDINGS:Adolescent rats had free access to 5% sucrose or water from postnatal day 30 to 46. The control group had access to water only. In adulthood, rats were tested for self-administration of saccharin (sweet), maltodextrin (non-sweet), and cocaine (a potent drug of abuse) using fixed- and progressive-ratio schedules, and a concentration-response curve for each substance. Adult rats, exposed or not exposed to sucrose, were tested for saccharin self-administration later in life to verify the specificity of adolescence for the sugar effects. Sugar overconsumption during adolescence, but not during adulthood, reduced the subsequent motivation for saccharin and maltodextrin, but not cocaine. This selective decrease in motivation is more likely due to changes in brain reward processing than changes in gustatory perception.CONCLUSIONS/SIGNIFICANCE:Sugar overconsumption induces a developmental stage-specific chronic depression in reward processing that may contribute to an increase in the vulnerability to reward-related psychiatric disorders
- …