413 research outputs found

    Why is the Followers-to-Following Ratio so Important?

    Get PDF
    The impact of social media exposure on various aspects of users’ personality and mental health has become a popular topic for psychological research over the past ten years. Instagram provides users with numbers indicating how many accounts they follow and how many accounts follow them. This ratio carries social status, in that someone with more followers than people they follow could be viewed as a more popular user. The current study explores the relationship between Instagram use, user popularity, the Big 5 personality traits, self-esteem, histrionic tendencies, and narcissistic tendencies in a sample of 125 undergraduates. We hypothesized that users with larger follower-to-following ratios would have lower self-esteem, and higher narcissistic and histrionic tendencies. There were few significant correlations between the personality traits and followers-to-following ratios, suggesting that more research is needed in order to determine the impact that an individual’s personality has on the amount of attention and effort they spend on their ratio

    Characterization of a novel and spontaneous mouse model of inflammatory arthritis

    Get PDF
    Abstract Introduction Mouse models of rheumatoid arthritis (RA) have proven critical for identifying genetic and cellular mechanisms of the disease. Upon discovering mice in our breeding colony that had spontaneously developed inflamed joints reminiscent of RA, we established the novel IIJ (inherited inflamed joints) strain. The purpose of this study was to characterize the histopathological, clinical, genetic and immunological properties of the disease. Methods To begin the IIJ strain, an arthritic male mouse was crossed with SJL/J females. Inheritance of the phenotype was then tracked by intercrossing, backcrossing and outcrossing to other inbred strains. The histopathology of the joints and extraarticular organ systems was examined. Serum cytokines and immunoglobulins (Igs) were measured by ELISA and cytometric bead array. Transfer experiments tested whether disease could be mediated by serum alone. Finally, the cellular joint infiltrate and the composition of secondary lymphoid organs were examined by immunohistochemistry and flow cytometry. Results After nine generations of intercrossing, the total incidence of arthritis was 33% (304 of 932 mice), with females being affected more than males (38% vs. 28%; P < 0.001). Swelling, most notably in the large distal joints, typically became evident at an early age (mean age of 52 days). In addition to the joint pathology, which included bone and cartilage erosion, synovial hyperproliferation and a robust cellular infiltration of mostly Gr-1+ neutrophils, there was also evidence of systemic inflammation. IL-6 was elevated in the sera of recently arthritic mice, and extraarticular inflammation was observed histologically in multiple organs. Total serum Ig and IgG1 levels were significantly elevated in arthritic mice, and autoantibodies such as rheumatoid factor and Ig reactive to joint components (collagen type II and joint homogenate) were also detected. Nevertheless, serum failed to transfer disease. A high percentage of double-negative (CD4-CD8-) CD3+ TCRα/β+ T cells in the lymphoid organs of arthritic IIJ mice suggested significant disruption in the T-cell compartment. Conclusions Overall, these data identify the IIJ strain as a new murine model of inflammatory, possibly autoimmune, arthritis. The IIJ strain is similar, both histologically and serologically, to RA and other murine models of autoimmune arthritis. It may prove particularly useful for understanding the female bias in autoimmune diseases

    Bioactive Recombinant Human Oncostatin M for NMR-Based Screening in Drug Discovery

    Get PDF
    Oncostatin M (OSM) is a pleiotropic, interleukin-6 family inflammatory cytokine that plays an important role in inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis, and cancer progression and metastasis. Recently, elevated OSM levels have been found in the serum of COVID-19 patients in intensive care units. Multiple anti-OSM therapeutics have been investigated, but to date no OSM small molecule inhibitors are clinically available. To pursue a high-throughput screening and structure-based drug discovery strategy to design a small molecule inhibitor of OSM, milligram quantities of highly pure, bioactive OSM are required. Here, we developed a reliable protocol to produce highly pure unlabeled and isotope enriched OSM from E. coli for biochemical and NMR studies. High yields (ca. 10 mg/L culture) were obtained in rich and minimal defined media cultures. Purified OSM was characterized by mass spectrometry and circular dichroism. The bioactivity was confirmed by induction of OSM/OSM receptor signaling through STAT3 phosphorylation in human breast cancer cells. Optimized buffer conditions yielded 1H, 15N HSQC NMR spectra with intense, well-dispersed peaks. Titration of 15N OSM with a small molecule inhibitor showed chemical shift perturbations for several key residues with a binding affinity of 12.2 ± 3.9 μM. These results demonstrate the value of bioactive recombinant human OSM for NMR-based small molecule screening

    The maintenance of bastard children in London, 1790-1834

    Get PDF
    Despite recent scholarship historians still know relatively little about the dynamics of the maintenance of illegitimate children under the old poor law. This article examines the affiliation system in Southwark and Lambeth, 1790s-1830s. It analyses, for the first time, the proportion of fathers (and mothers) who paid maintenance for their children, either in lump sums or in weekly allowances, plus the associated costs of childbirth and legal fees, the range of weekly sums, the duration for which they were paid, and the role of fathers' occupations. The analysis reveals that many men paid more than the 2s. 6d. cited by historians. Fathers supported their illegitimate children financially for many more years than the period of nurture of seven years. The occupations of fathers were not representative of all men and their occupations played varying roles in the sums they paid and the duration. The article also reanalyses the 1834 Town Queries for London and the parochial bastardy recovery rate. The article reveals a complex system, variable at the parochial and regional level – as was the wider poor law – but one which ran in parallel with the poor law and offered tenacious overseers a way of deflating the parish rates.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/ehr.1227

    A mutli-technique search for the most primitive CO chondrites

    Get PDF
    As part of a study to identify the most primitive COs and to look for weakly altered CMs amongst the COs, we have conducted a multi-technique study of 16 Antarctic meteorites that had been classified as primitive COs. For this study, we have determined: (1) the bulk H, C and N abundances and isotopes, (2) bulk O isotopic compositions, (3) bulk modal mineralogies, and (4) for some selected samples the abundances and compositions of their insoluble organic matter (IOM). Two of the 16 meteorites do appear to be CMs – BUC 10943 seems to be a fairly typical CM, while MIL 090073 has probably been heated. Of the COs, DOM 08006 appears to be the most primitive CO identified to date and is quite distinct from the other members of its pairing group. The other COs fall into two groups that are less primitive than DOM 08006 and ALH 77307, the previously most primitive CO. The first group is composed of members of the DOM 08004 pairing group, except DOM 08006. The second group is composed of meteorites belonging to the MIL 03377 and MIL 07099 pairing groups. These two pairing groups should probably be combined. There is a dichotomy in the bulk O isotopes between the primitive (all Antarctic finds) and the more metamorphosed COs (mostly falls). This dichotomy can only partly be explained by the terrestrial weathering experienced by the primitive Antarctic samples. It seems that the more equilibrated samples interacted to a greater extent with 16O-poor material, probably water, than the more primitive meteorites

    Direct and indirect cardiovascular and cardiometabolic sequelae of the combined anti-retroviral therapy on people living with HIV

    Get PDF
    With reports of its emergence as far back as the early 1900s, human immunodeficiency virus (HIV) has become one of the deadliest and most difficult viruses to treat in the era of modern medicine. Although not always effective, HIV treatment has evolved and improved substantially over the past few decades. Despite the major advancements in the efficacy of HIV therapy, there are mounting concerns about the physiological, cardiovascular, and neurological sequelae of current treatments. The objective of this review is to (Blattner et al., Cancer Res., 1985, 45(9 Suppl), 4598s–601s) highlight the different forms of antiretroviral therapy, how they work, and any effects that they may have on the cardiovascular health of patients living with HIV, and to (Mann et al., J Infect Dis, 1992, 165(2), 245–50) explore the new, more common therapeutic combinations currently available and their effects on cardiovascular and neurological health. We executed a computer-based literature search using databases such as PubMed to look for relevant, original articles that were published after 1998 to current year. Articles that had relevance, in any capacity, to the field of HIV therapy and its intersection with cardiovascular and neurological health were included. Amongst currently used classes of HIV therapies, protease inhibitors (PIs) and combined anti-retroviral therapy (cART) were found to have an overall negative effect on the cardiovascular system related to increased cardiac apoptosis, reduced repair mechanisms, block hyperplasia/hypertrophy, decreased ATP production in the heart tissue, increased total cholesterol, low-density lipoproteins, triglycerides, and gross endothelial dysfunction. The review of Integrase Strand Transfer Inhibitors (INSTI), Nucleoside Reverse Transcriptase Inhibitors (NRTI), and Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI) revealed mixed results, in which both positive and negative effects on cardiovascular health were observed. In parallel, studies suggest that autonomic dysfunction caused by these drugs is a frequent and significant occurrence that needs to be closely monitored in all HIV + patients. While still a relatively nascent field, more research on the cardiovascular and neurological implications of HIV therapy is crucial to accurately evaluate patient risk

    Lessons Learned from Preparing OSIRIS-REx Spectral Analog Samples for Bennu

    Get PDF
    NASA\u27s OSIRIS-REx sample return mission launched on September 8th, 2016 to rendezvous with B-type hide asteroid (101955) Bennu in 2018. Type C and B asteroids have been linked to carbonaceous chondrites because of their similar visible - to - near infrared (VIS-NIR) spectral properties [e.g., 1,2]. The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) and the Thermal Emission Spectrometer (OTES) will make spectroscopic observations of Bennu during the encounter. Constraining the presence or absence of hydrous minerals (e.g., Ca-carbonate, phyllosilicates) and organic molecules will be key to characterizing Bennu [3] prior to sample site selection. The goal of this study was to develop a suite of analog and meteorite samples and obtain their spectral properties over the wavelength ranges of OVIRS (0.4- 4.3 micrometer) and OTES (5.0-50 micrometer). These spectral data were used to validate the mission science-data processing system. We discuss the reasoning behind the study and share lessons learne

    A divergent heritage for complex organics in Isheyevo lithic clasts

    Get PDF
    Primitive meteorites are samples of asteroidal bodies that contain a high proportion of chemically complex organic matter (COM) including prebiotic molecules such as amino acids, which are thought to have been delivered to Earth via impacts during the early history of the Solar System. Thus, understanding the origin of COM, including their formation pathway(s) and environment(s), is critical to elucidate the origin of life on Earth as well as assessing the potential habitability of exoplanetary systems. The Isheyevo CH/CBb carbonaceous chondrite contains chondritic lithic clasts with variable enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data are complemented by electron microprobe analyses of the clast mineral chemistry and bulk Mg and Cr isotopes obtained by inductively coupled plasma and thermal ionization mass spectrometry, respectively (MC-ICPMS and TIMS). Weakly hydrated (A) clasts largely consist of Mg-rich anhydrous silicates with local hydrated veins composed of phyllosilicates, magnetite and globular and diffuse organic matter. Extensively hydrated clasts (H) are thoroughly hydrated and contain Fe-sulfides, sometimes clustered with organic matter, as well as magnetite and carbonates embedded in a phyllosilicate matrix. The A-clasts are characterized by a more 15N-rich bulk nitrogen isotope composition (δ15N = 200–650‰) relative to H-clasts (δ15N = 50–180‰) and contain extremely 15N-rich domains with δ15N 15N-rich domains show that the lithic clast diffuse organic matter is typically more 15N-rich than globular organic matter. The correlated δ15N values and C/N ratios of nanoglobules require the existence of multiple organic components, in agreement with the H isotope data. The combined H and N isotope data suggest that the organic precursors of the lithic clasts are defined by an extremely 15N-poor (similar to solar) and D-rich component for H-clasts, and a moderately 15N-rich and D-rich component for A-clasts. In contrast, the composition of the putative fluids is inferred to include D-poor but moderately to extremely 15N-rich H- and N-bearing components. The variable 15N enrichments in H- and A-clasts are associated with structural differences in the N bonding environments of their diffuse organic matter, which are dominated by amine groups in H-clasts and nitrile functional groups in A-clasts. We suggest that the isotopically divergent organic precursors in Isheyevo clasts may be similar to organic moieties in carbonaceous chondrites (CI, CM, CR) and thermally recalcitrant organic compounds in ordinary chondrites, respectively. The altering fluids, which are inferred to cause the 15N enrichments observed in the clasts, may be the result of accretion of variable abundances of NH3 and HCN ices. Finally, using bulk Mg and Cr isotope composition of clasts, we speculate on the accretion regions of the various primitive chondrites and components and the origin of the Solar System’s N and H isotope variability
    corecore