186 research outputs found

    Effect of Ultrasound on Molecular Structure Development of Polylactide

    Get PDF
    YesIn this work, effect of ultrasound on molecular structure development of Polylactide (PLA) was studied. It was found that the intrinsic viscosity of PLA decreased with increasing treating time, temperature and ultrasound time. Different from traditional thermal degradation of PLA, the degradation of PLA under ultrasound treatment showed that chain scission and chain combination of PLA competed with each other in the degradation process, which could be divided into two steps. The mechanism of ultrasound degradation of PLA was proposed. Furthermore, Thermal properties were characterized by DSC to show heat and ultrasound effects on molecular structure development of PLA

    Novel rhodium on carbon catalysts for the oxidation of benzyl alcohol to benzaldehyde: A study of the modification of metal/support interactions by acid pre-treatments

    Get PDF
    Rhodium nanoparticles or rhodium organometallic complexes are mainly used in catalysis for reduction or hydroformylation reactions. In this work instead, we explored the capabilities of Rh nanoparticles as an oxidation catalyst, applied to the oxidation of benzyl alcohol to benzaldehyde under very mild conditions (100 °C, and atmospheric pressure) as a model reaction. Here we report the preparation of novel Rh/C catalysts by using an impregnation protocol, with particular emphasis on the pre-treatment of the carbon supports by using HNO3 and HCl, as well as the characterization of these materials by using an array of methods involving TEM, XPS and XRPD. Our preparation method led to a wide Rh particle size distribution ranging from 20 to 100 nm, and we estimate an upper limit diameter of Rh nanoparticles for their activity towards benzyl alcohol oxidation to be ca. 30 nm. Furthermore, a HNO3 pre-treatment of the activated carbon support was able to induce a smaller and narrower particle size distribution of Rh nanoparticles, whereas a HCl pre-treatment had no effect or sintered the Rh nanoparticles. We rationalise these results by HNO3 as an acid able to create new nucleation sites for Rh on the carbon surface, with the final effect of smaller nanoparticles, whereas for HCl the effect of sintering was most likely due to site blocking of the nucleation sites over the carbon surface. The roles of acid centres on the carbon surfaces for the oxidation reaction was also investigated, and the larger their amounts the larger the amounts of by-products. However, by treatment with HNO3 we were able to convert neutral or basic carbons into supports capable to enhance the catalytic activity of Rh, and yet minimised detrimental effects on the selectivity of the oxidation to benzaldehyde

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Overview of the JET results in support to ITER

    Get PDF

    Interfacial stick-slip transition in hydroxyapatite filled high density polyethylene composite

    No full text
    Effect of filler addition and temperature on the stick-slip transition in high density polyethylene melt was studied. Results showed that shear stresses corresponding to stick-slip transition increases with the addition of filler. Increase in temperature also increases the shear stresses for stick-slip transition. The features of the flow curves of composites and that of unfilled system remain identical. Filler addition lowers the shear rate at which the transition occurs. The composite extrudate did not show characteristic extrudate distortions associated with the unfilled polymer
    corecore