1,058 research outputs found

    Clinical presentation, diagnostic findings and outcome of dogs with presumptive spinal-only meningoencephalomyelitis of unknown origin

    Get PDF
    Objectives: To summarise clinical presentation, diagnostic findings and long-term outcome for dogs clinically diagnosed with meningoencephalomyelitis of unknown origin affecting the spinal cord alone. Methods: Medical records were reviewed for dogs diagnosed with presumptive spinal-only meningoencephalomyelitis of unknown origin between 2006 and 2015. Results: 21 dogs were included; the majority presented with an acute (43%) or chronic (52%) onset of neurological signs. Ambulatory paresis was the most common neurological presentation (67%). Neurological examination most commonly revealed a T3-L3 myelopathy, and spinal hyperaesthesia was a common finding (71%). A spinal cord lesion was visible in 90% of cases on magnetic resonance imaging. Eighteen lesions (86%) showed parenchymal contrast enhancement and 17 lesions (81%) showed contrast enhancement of overlying meninges. All dogs were treated with immunosuppressive doses of glucocorticosteroids, sometimes combined with cytosine arabinoside. At time of data capture, 10/21 dogs (48%) had died or been euthanased because of the condition. Overall median survival time was 669 days. Clinical Significance: Meningoencephalomyelitis of unknown origin should be considered in the differential diagnosis of dogs presenting with a progressive myelopathy. Magnetic resonance imaging features can possibly help to distinguish presumptive meningoencephalomyelitis of unknown origin from other more common spinal diseases. Overall, long-term survival is guarded, approximately 50% of dogs will die or be euthanased despite appropriate therapy

    Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings

    Get PDF
    The ion mass spectrometer on Cassini detected enhanced ion flux near Saturn's main rings that is consistent with the presence of atomic and molecular oxygen ions in the thermal plasma. The ring "atmosphere'' and "ionosphere'' are likely produced by UV photosputtering of the icy rings and subsequent photoionization of O-2. The identification of the O+ and O-2(+) ions is made using time-of-flight analysis and densities and temperatures are derived from the ion counting data. The ion temperatures over the main rings are a minimum near synchronous orbit and increase with radial distance from Saturn as expected from ion pick up in Saturn's magnetic field. The O-2(+) temperatures provide an estimate of the neutral O-2 temperature over the main rings. The ion mass spectrometer also detected significant O-2(+) outside of the main rings, near the F ring. It is concluded that between the F and G rings, the heavy ion population most likely consists of an admixture of O-2(+) and water group ions O+, OH+, and H2O+

    Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere

    Get PDF
    Initial Cassini observations have revealed evidence for interchanging magnetic flux tubes in the inner Saturnian magnetosphere. Some of the reported flux tubes differ remarkably by their magnetic signatures, having a depressed or enhanced magnetic pressure relative to their surroundings. The ones with stronger fields have been interpreted previously as either outward moving mass-loaded or inward moving plasma-depleted flux tubes based on magnetometer observations only. We use detailed multi-instrumental observations of small and large density depletions in the inner Saturnian magnetosphere from Cassini Rev. A orbit that enable us to discriminate amongst the two previous and opposite interpretations. Our analysis undoubtedly confirms the similar nature of both types of reported interchanging magnetic flux tubes, which are plasma-depleted, whatever their magnetic signatures are. Their different magnetic signature is clearly an effect associated with latitude. These Saturnian plasma-depleted flux tubes ultimately may play a similar role as the Jovian ones

    Del Pezzo surfaces with 1/3(1,1) points

    Full text link
    We classify del Pezzo surfaces with 1/3(1,1) points in 29 qG-deformation families grouped into six unprojection cascades (this overlaps with work of Fujita and Yasutake), we tabulate their biregular invariants, we give good model constructions for surfaces in all families as degeneracy loci in rep quotient varieties and we prove that precisely 26 families admit qG-degenerations to toric surfaces. This work is part of a program to study mirror symmetry for orbifold del Pezzo surfaces.Comment: 42 pages. v2: model construction added of last remaining surface, minor corrections, minor changes to presentation, references adde

    Hydrophobic and Hydrophilic Effects on Water Structuring and Adhesion in Denture Adhesives

    Get PDF
    Denture adhesives are designed to be moisture-sensitive through the inclusion of a blend of polymer salts with varying degrees of water-sensitivity. This enables the adhesive to mix with saliva in vivo and activate its high tack, through the formation of a mucilaginous layer. We report for the first time, the use of differential scanning calorimetry (DSC) to study a series of hydrophobic and hydrophilic polymeric systems in order to correlate water-structuring behavior with adhesion strength. Adhesive bonding of the more hydrophobic variants was higher than that of a commercial-based control and a more hydrophilic polymer system in both lap shear and tensile configurations. Water-binding data suggested that increasing the hydrophobicity of the maleic acid copolymer substituents led to decreased levels of freezing water. In comparison, increasing the hydrophilic nature of the polymer backbone gave higher levels of freezing water within the hydrated samples. The results of this study emphasize the importance of varying the levels of hydrophobic and hydrophilic components within denture adhesive formulations, alongside the types of water present within the adhesive systems. This phenomenon has shown the potential to fine-tune the adhesive properties and failure mode against poly(methyl methacrylate), PMMA, surfaces

    Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti

    Get PDF
    The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti

    Conceptual Ecological Modelling of Sublittoral Rock Habitats to Inform Indicator Selection

    Get PDF
    The purpose of this study is to produce a series of Conceptual Ecological Models (CEMs) that represent sublittoral rock habitats in the UK. CEMs are diagrammatic representations of the influences and processes that occur within an ecosystem. They can be used to identify critical aspects of an ecosystem that may be studied further, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. It is intended that the models produced by this project will be used to guide indicator selection for the monitoring of this habitat in UK waters. CEMs may eventually be produced for a range of habitat types defined under the UK Marine Biodiversity Monitoring R&D Programme (UKMBMP), which, along with stressor models, are designed to show the interactions within impacted habitats, would form the basis of a robust method for indicator selection. This project builds on the work to develop CEMs for shallow sublittoral coarse sediment habitats (Alexander et al 2014). The project scope included those habitats defined as ‘sublittoral rock’. This definition includes those habitats that fall into the EUNIS Level 3 classifications A3.1 Atlantic and Mediterranean high energy infralittoral rock, A3.2 Atlantic and Mediterranean moderate energy infralittoral rock, A3.3 Atlantic and Mediterranean low energy infralittoral rock, A4.1 Atlantic and Mediterranean high energy circalittoral rock, A4.2 Atlantic and Mediterranean moderate energy circalittoral rock, and A4.3 Atlantic and Mediterranean low energy circalittoral rock as well as the constituent Level 4 and 5 biotopes that are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted using a pragmatic and iterative approach to gather evidence regarding species traits and information that would be used to inform the models and characterise the interactions that occur within the sublittoral rock habitat. All information gathered during the literature review was entered into a data logging pro-forma spreadsheet that accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A multivariate analysis approach was adopted to assess ecologically similar groups (based on ecological and life history traits) of fauna from the identified species to form the basis of the models. A model hierarchy was developed based on these ecological groups. One general control model was produced that indicated the high-level drivers, inputs, biological assemblages, ecosystem processes and outputs that occur in sublittoral rock habitats. In addition to this, seven detailed sub-models were produced, which each focussed on a particular ecological group of fauna within the habitat: ‘macroalgae’, ‘temporarily or permanently attached active filter feeders’, ‘temporarily or permanently attached passive filter feeders’, ‘bivalves, brachiopods and other encrusting filter feeders’, ‘tube building fauna’, ‘scavengers and predatory fauna’, and ‘non-predatory mobile fauna’. Each sub-model is accompanied by an associated confidence model that presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers that affect each ecological group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Physical drivers which influence the ecosystem were found to be of high importance for the sublittoral rock habitat, with factors such as wave exposure, water depth and water currents noted to be crucial in defining the biological assemblages. Other important factors such as recruitment/propagule supply, and those which affect primary production, such as suspended sediments, light attenuation and water chemistry and temperature, were also noted to be key and act to influence the food sources consumed by the biological assemblages of the habitat, and the biological assemblages themselves. Output processes performed by the biological assemblages are variable between ecological groups depending on the specific flora and fauna present and the role they perform within the ecosystem. Of particular importance are the outputs performed by the macroalgae group, which are diverse in nature and exert influence over other ecological groups in the habitat. Important output processes from the habitat as a whole include primary and secondary production, bioengineering, biodeposition (in mixed sediment habitats) and the supply of propagules; these in turn influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability (in mixed sediment habitats), habitat provision and population and algae control. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions that occur at the regional to global scale. Features within the models that are most useful for monitoring habitat status and change due to natural variation have been identified, as have those that may be useful for monitoring to identify anthropogenic causes of change within the ecosystem. Biological, physical and chemical features of the ecosystem have been identified as potential indicators to monitor natural variation, whereas biological factors and those physical /chemical factors most likely to affect primary production have predominantly been identified as most likely to indicate change due to anthropogenic pressures

    Adhesive stresses in axially-loaded tubular bonded joints - Part II: development of an explicit closed-form solution for the Lubkin and Reissner model

    Get PDF
    The literature presents several analytical models and solutions for single- and double-lap bonded joints, whilst the joint between circular tubes is less common. For this geometry the pioneering model is that of Lubkin and Reissner (Trans. ASME 78, 1956), in which the tubes are treated as cylindrical thin shells subjected to membrane and bending loading, whilst the adhesive transmits shear and peel stresses which are a function of the axial coordinate only. Such assumptions are consistent with those usually adopted for the flat joints. A former investigation has shown that the L-R model agrees with FE results for many geometries and gives far better results than other models appeared later in the literature. The aim of the present work is to obtain and present an explicit closed-form solution, not reported by Lubkin and Reissner, which is achieved by solving the governing equations by means of the Laplace transform. The correctness of the findings, assessed by the comparison with the tabular results of Lubkin and Reissner, and the features of this solution are commente

    The chromospherically--active binary CF Tuc revisited

    Full text link
    New high-resolution spectra, of the chromospherically active binary system CF Tuc, taken at the Mt. John University Observatory in 2007, were analyzed using two methods: cross-correlation and Fourier--based disentangling. As a result, new radial velocity curves of both components were obtained. The resulting orbital elements of CF Tuc are: a1sinia_{1}{\sin}i=0.0254±0.00010.0254\pm0.0001 AU, a2sinia_{2}{\sin}i=0.0228±0.00010.0228\pm0.0001 AU, M1siniM_{1}{\sin}i=0.902±0.0050.902\pm0.005 MM_{\odot}, and M2siniM_{2}{\sin}i=1.008±0.0061.008\pm0.006 MM_{\odot}. The cooler component of the system shows Hα\alpha and CaII H & K emissions. Our spectroscopic data and recent BVBV light curves were solved simultaneously using the Wilson-Devinney code. A dark spot on the surface of the cooler component was assumed to explain large asymmetries observed in the light curves. The following absolute parameters of the components were determined: M1M_{1}=1.11±0.011.11\pm0.01 MM_{\odot}, M2M_{2}=1.23±0.011.23\pm0.01 MM_{\odot}, R1R_{1}=1.63±0.021.63\pm0.02 RR_{\odot}, R2R_{2}=3.60±0.023.60\pm0.02 RR_{\odot}, L1L_{1}=3.32±0.513.32\pm0.51 LL_{\odot} and L2L_{2}=3.91±0.843.91\pm0.84 LL_{\odot}. The orbital period of the system was studied using the O-C analysis. The O-C diagram could be interpreted in terms of either two abrupt changes or a quasi-sinusoidal form superimposed on a downward parabola. These variations are discussed by reference to the combined effect of mass transfer and mass loss, the Applegate mechanism and also a light-time effect due to the existence of a massive third body (possibly a black hole) in the system. The distance to CF Tuc was calculated to be 89±689\pm6 pc from the dynamic parallax, neglecting interstellar absorption, in agreement with the Hipparcos value.Comment: 33 pages, 10 figures, accepted for publication by MNRA
    corecore