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Abstract 

The literature presents several analytical models and solutions for single- and double-lap 

bonded joints, whilst the joint between circular tubes is less common. For this geometry the 

pioneering model is that of Lubkin and Reissner (Trans. ASME 78, 1956), in which the tubes 

are treated as cylindrical thin shells subjected to membrane and bending loading, whilst the 

adhesive transmits shear and peel stresses which are a function of the axial coordinate only. 

Such assumptions are consistent with those usually adopted for the flat joints. A former 

investigation has shown that the L-R model agrees with FE results for many geometries and 

gives far better results than other models appeared later in the literature. The aim of the 

present work is to obtain and present an explicit closed-form solution, not reported by Lubkin 

and Reissner, which is achieved by solving the governing equations by means of the Laplace 

transform. The correctness of the findings, assessed by the comparison with the tabular results 

of Lubkin and Reissner, and the features of this solution are commented. 
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1. Introduction 

The literature survey carried out in the first part of this study [1] and the related comparison 

with finite element (FE) results have evidenced that, among the known models of the tubular 

bonded joints under axial loading [2-9], only the one by Lubkin and Reissner [2] gives a 

truthful distribution of the peel stress in the overlap, while the shear component is predicted 

correctly in all models. Moreover, the FE results evidence that the peel and shear stresses are 

the most important components; the remaining ones, namely the axial and hoop stresses, have 

similar magnitude and are about one half of the peel stress. 

On the basis of these findings, the aim of this work is reconsidering the model by Lubkin and 

Reissner to make up for its practical shortcoming, which is the lack of an explicit closed-form 

solution. The set of differential equations is solved by means of the Laplace transform, with a 

procedure modified to cope with the issue of dealing with a boundary problem (the known 

conditions are applied at the ends of the overlap) instead of an initial value problem (as in 

typical dynamic problems). The result is an explicit formula for the solution, which evidences 

the differences with respect to the flat lap joint and allows for direct calculation of the 

stresses. 

2. Lubkin and Reissner model 

The model by Lubkin and Reissner [2], for which a brief description has already been given 

in the first part [1] of the present study, is reviewed here in more detail. Figure 1 shows the 

shape of the joint as well as the geometrical and material properties. 



 

Fig. 1. Schematic of the tubular joint (also the related elastic constants are shown). 

Considering first the tubes (subscripts 1, 2), a
1
 and a

2
 are the mean radii of the walls, E

1
 and 

E
2
 are the Young moduli, ν

1
 and ν

2
 are the Poisson’s ratios. Regarding the adhesive (subscript 

a, when adopted), a is the mean radius of the layer, η is the thickness, E
a
 is the Young 

modulus, G
a
 is the shear modulus. The axial force loading the joint is F, the overlap length is 

2c; thus, having set the origin at midspan, the axial coordinate x varies in the range ±c. Also 

the normalized coordinate z is adopted, varying between 0 (left end) and 1 (right end). With 

reference to Fig. 2, accounting for axial (T
1
, T

2
), transverse (V

1
, V

2
) and hoop (N

1
, N

2
) forces 

per unit length, bending moments (M
1
, M

2
) per unit length, peel (σy) and shear (τxy) stresses in 

the adhesive, the following equilibrium equations can be written for the two adherends: 
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Fig. 2. Elementary free body diagrams for the joint. 

The following equations of axial, hoop and bending deformability can be respectively written, 

which involve the longitudinal (u
1
, u

2
) and transverse (v

1
, v

2
) displacements at the mean radii 

of the tubes: 
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where D
1
, D

2
 are the bending stiffnesses, defined as )1(12 23

iiii tED  , with i = 1, 2. 

The peel and shear stresses in the adhesive are related to displacements of the outer surface of 

tube 1 and inner surface of tube 2: 
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It must be noted that in equation (7) the surface displacements coincide with those of the 

mean surfaces, whilst in equation (8), accounting for the membrane and bending behaviour, 

the displacements are 
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for the inner surface of tube 2. 

Thus, the problem involves in total fourteen equations –from (1a,b) to (6a,b), plus (7) and 

(8)– in the fourteen unknowns T
1
, V

1
, N

1
, M

1
, u

1
, v

1
; T

2
, V

2
, N

2
, M

2
, u

2
, v

2
; 

y
, 

xy
, which are 

all a function of x. In the solution procedure depicted in [2], by means of a sequence of 

manipulation V
i
, N

i
, M

i
, u

i
 (i = 1,2) and 

y
 are eliminated; moreover, noticing that for the 

global axial equilibrium the condition   FTaTa  22112  must hold, an auxiliary unknown T
0
 

is assumed such that 

11220 TaTaaT   (9) 

and, from equations (1a,b), 

xydx

dT
 20  (10) 

Therefore, the axial forces per unit length T
1
, T

2
 and the shear stress in the adhesive 

xy
 can be 

expressed as a function of such auxiliary unknown T
0
; by mathematical manipulations a set of 

three simultaneous differential equations is obtained in the three unknowns v
1
, v

2
 and T

0
. 

Then, three dimensionless functions g
1
(z), g

2
(z), g

3
(z) are introduced, in which   ccxz 2/  

is a dimensionless abscissa, such that: 
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The set of simultaneous differential equations becomes: 
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in which the primes indicate the differentiation order, and the coefficients B
i
, K

i
, Λ

i
, γ

ij
, (i,j = 



1,2) are defined as follows: 
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The set of simultaneous equations (12) must be completed by the boundary conditions, 

according to the state at the ends of the overlap. It is evident that in the end sections of the 

tubes both axial and transverse forces are nil, as well as the bending moments; therefore 

cxMVT  in    0222 , cxMVT  in   0111 . Conversely, in the sections where the 

overlap ends and the tubes continue as independent elements, the continuity of forces, 

moment, displacement and rotation must be ensured. Regarding this aspect, it can be 

recognized that in the tubes out of the overlap the bending behaviour is given by 
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 (i = 1,2) are constants to be determined. This result can be 

easily obtained by deleting the terms (related to the presence of the adhesive) which couple 

equations (12a) and (12b), or referring to the theory for bending of thin cylindrical shells (as 

can be found, e.g., in [10]). 

Adopting the dimensionless abscissa (z) and functions (g
1
, g

2
, g

3
), the set of boundary 

conditions, as reported in [1], in the left end of the overlap (z = 0) is 
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and in the right end of the overlap (z = 1) is 
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Note that in (15) and (16) the second subscript of the dimensionless functions stands for the 

value of z in which they are evaluated (0 or 1). The study of Lubkin and Reissner gives no 

additional details on the solution; it is only remarked that the equation set is linear with 

constant coefficients, thus “… solution is possible by standard methods”. The results reported 

in the paper are the normalized stress values (peel and shear) in 11 points of the overlap for a 

collection of 48 cases corresponding to different combinations of overlap length, stiffness and 

curvature. 

3. Solution by means of the Laplace transform 

In the search for an explicit closed-form solution of the problem, the major practical difficulty 

is given by the size, tenth order, of the set of differential equations. Although an approximate 

solution can be obtained without particular difficulties by numerical integration, the 

knowledge of the analytical form of the solution gives larger information and enables to 



investigate the properties of solution, also by comparison with the case of the flat joint. The 

adopted procedure is based on the Laplace transform, which changes the equation set from 

differential to algebraic. By applying the transform to the simultaneous equations (12), the 

following set is obtained, here written in matrix form: 
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in which s is the Laplacian complex variable and G
1
(s), G

2
(s), G

3
(s) are, respectively, the 

transforms of the functions g
1
(z), g

2
(z), g

3
(z). 

The vector of the constant terms in the right hand side of the equation set (17) depends on g
1
, 

g
2
, g

3
 and their derivatives calculated in z = 0. By replacing the initial condition (15) in such 

vector, after several manipulations it is possible to obtain a vector of constant terms as a 

function of the initial conditions 
01g , Ig

01 , 
02g , Ig

02 , Ig
03 only. By solving the equation set (17), 

the Laplace transforms are obtained explicitly: 
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In (18) the coefficients id2  (i = 0,1,…,5) in the denominator are known, whilst the 



coefficients in ,1 , in ,2  and 
in ,3
 (i = 0,1,…,10) in the numerator are a function of the unknown 

initial conditions 
01g , Ig

01 , 
02g , Ig

02  and Ig
03 . Thus, it is worth of note that the Laplace 

transforms in (18) are rational functions which can be written as ratios of polynomials, of 

tenth degree in the numerator and of eleventh degree in the denominator. The polynomial in 

the denominator is the same for the three transforms and is obtained by the product of a bi-

quintic polynomial, (i.e. a quintic polynomial in s2) and the s variable; thus, it is immediate to 

recognize that s = 0 is a root of the denominator. By decomposing in partial fractions the 

rational functions, an equivalent representation of the three Laplace transforms is obtained: 
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in which q is the number of distinct roots (real or complex) of the bi-quintic polynomial, Nmj 

is the algebraic multiplicity of the j-th root pj, the coefficients (real or complex) Ci,j,k are a 

function of the unknown initial conditions and are, according to the residue method for partial 

fractions decomposition (see e.g. [11]), equal to: 
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In the numerous cases studied in this work, assuming for the elastic constants and the 

geometrical dimensions in (12) different values in a meaningful range of variation, the five 

roots obtained from the quintic polynomial in s2 had always unit algebraic multiplicity; one of 

them was real and the remaining four were originated from two pairs of complex conjugates. 

The ten roots of the bi-quintic polynomial, easily obtainable from the five roots of the 

associated quintic polynomial, together with the trivial nil root can be finally expressed as: 
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where r
1
, r

2
, r

3
 and m

2
, m

3
 are respectively the absolute values of the real and imaginary parts 

different from zero (note that m
1
 = 0) of the bi-quintic polynomial. It can be noticed that such 

roots can be easily obtained, starting from the quintic equation in s2, by finding numerically 

the only real root and calculating analytically (for the quartic polynomial explicit solutions for 

the roots are available) the two remaining pairs of complex conjugate roots. 

Starting from the partial fractions decomposition (19) and considering the roots given in (21) 

it is possible to obtain the dimensionless functions g
1
(z), g

2
(z), g

3
(z) as a function of the initial 

unknown boundary conditions: 
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where ni,0 and d0 are defined in Equation (18) and the coefficients Ci,j are obtained from 

formula (20) by considering a unit algebraic multiplicity for each root (i.e., Nmj = 1). In 

particular, the coefficients Ci,j become equal to    III
ij
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
. 

Eventually, accounting for the definitions of the roots in (21) and through suitable 

manipulations, the explicit formulae for the dimensionless functions are obtained: 
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in which the constants 
igjc ,1, , 
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igjc ,4,  (i, j = 1,2,3) are real, depend on the 

unknown left (z = 0) conditions and are equal to 
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    i = 1,2,3 (24) 

where Re[ ] and Im[ ] indicate respectively the real and imaginary part of a complex number. 



The dimensionless functions in (23) are still expressed as a function of the five unknown left 

conditions 
01g , Ig

01 , 
02g , Ig

02  and Ig
03 . Using the five right (z = 1) boundary conditions given 

in (16), it is possible to build a set of algebraic equations which is linear (the unknown initial 

conditions appear always to the unit power) and easy to solve in the five unknowns 
01g , Ig

01 , 

02g , Ig
02  and Ig

03 . After this step, the three dimensionless functions g1(z), g2(z), g3(z) are 

completely determined and, therefore, it is possible to relate them to the peel and shear 

stresses in the adhesive by means of the equations (7), (10), (11) and (13a): 
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Replacing in (25) the definitions (23) of the dimensionless functions and rearranging in 

suitable way the terms, the final formulae for the peel and shear stresses are obtained: 
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where the new constants are given by 
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4. Numerical examples 

To clarify the applicability of this procedure, the solution of two practical examples is shown 

in the following. For the first example the solution is presented step by step; for the second 

example, since the mathematical passages are the same, only the final equations are given in 

the text. The cases are taken from the collection reported in [2] and correspond to the 

examples 1 and 2 considered in [1]. In both cases, the two adherends have identical thickness 

and elastic constants, therefore ttt  21 , EEE  21  and 3.021  . The number of 

significant figures adopted in the following examples is chosen in order to show consistent 

numerical passages in the illustrative procedure and to obtain final results with the same 

numerical precision of the table of results reported in [2]. 

As for the first example, the other data, given in dimensionless form, are 3/8aa GE ,  

  20 atEE ,  102 tc ,    025.02  atR .  Considering such values and the boundary 

conditions in the left end (z = 0) the equation set (17) becomes 
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The characteristic equation of the matrix is 

01004739.11004267.31053928.11014709.16578.13 7264564810  sssss  

The real and imaginary parts of its roots are ;27410.7,16908.3,00364.2 321  rrr

 
.27421.7,28471.2,0 321  mmm  As explained in the previous section, solving the above 

numerical equation set (corresponding to the equation set (17)) for  sG1 ,  sG2  and  sG3 , 



decomposing in partial fractions and inverse transforming, the dimensionless functions g1(z), 

g2(z), g3(z) are built, in which the coefficients still depend on the five unknown left 

conditions. Applying the five boundary conditions known in the right end the following linear 

equation set is written 
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from which the five unknowns are obtained: ,02384.0,02974.0,00459.0
000 211  ggg I

70675.2,17159.0
00 32  II gg . After this step, it is possible to calculate the coefficients (27) 

to be replaced in the two formulae (26) so that the peel and shear stresses can be evaluated: 
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Adopting, as done in [1], the normalised stresses N (peel) and T (shear), respectively obtained 

dividing σy and τxy by  acF 4 , it is possible to plot the stress distribution in the joint 

independently of the intensity of the applied load. Figure 3 reports the graphs of N and T 

corresponding to the case under consideration, together with the relevant values published in 

[2]. As expected, the curves fit perfectly the points, since they are solutions of the same case. 



 
Fig. 3. Normalised stress distribution and comparison with the values published in [2], for the 

case   20 atEE , 102 tc ,   025.02  atR . 

As for the second example, the dimensionless data of the joint are 3/8aa GE , 4 ,  

22 tc , 1.0R . The chosen value for  corresponds to the one reported in the original tables 

given in [2]. However, as pointed out in [1], the results published in [2] correspond in reality 

to 5  rather than to 4 . Indeed, by carrying out the analytical solution also in the 5  

case, it will be shown in the following that data points given in [2] perfectly overlap the curve 

corresponding to 5 . 

For the 4  case, the real and imaginary parts are ;21032.2,25917.1,97407.0 321  rrr

 
.20871.2,82959.0,0 321  mmm  The coefficients (27) to be replaced in the two formulae 

(26) so that the peel and shear stresses can be evaluated are: 
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For the 5  case, the real and imaginary parts are ;10039.2,26293.1,81672.0 321  rrr

 
.09897.2,911839.0,0 321  mmm  The coefficients (27) are: 
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Figure 4 reports the graphs of N and T corresponding to the cases under consideration (both 

4  and 5 ), together with the relevant values published in [2] therein considered for 

4 . As anticipated, the data points given in [2] perfectly overlap only the curve 

corresponding to 5 . 

  



 

Fig. 4. Normalised stress distribution and comparison with the values published in [2], for the 

case 22 tc ,    1.02  atR ; data points for the case   4 atEE , curves for the cases 

4  and 5 . 

Every result given in [2] was accurately checked with the proposed analytical procedure: 

except for the results corresponding to 4 , the analytical solutions perfectly fit the data 

points. Results in [2] therein considered to values of 4  were found to perfectly overlap the 

analytical solutions corresponding to 5  in the present study. In this respect, in the tables 

given in [2], 4  should be substituted by 5 . 

 

6. Discussion 

The closed-form solutions (26) obtained through the procedure described in this work exhibit 

the typical structure of the stress distributions for this class of problems, including hyperbolic 

terms (m1 = 0), hyperbolic × harmonic terms and, for the peel stress only, a constant term. 

It can be useful to compare such solutions with those of the flat single lap joint, as found for 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

N
or

m
al

is
ed

 s
tr

es
se

s

z

Lubkin-Reissner
This solution; beta=4
This solution; beta=5

N(z)

T(z)



instance in [12]: 
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where A
1
-A

6
, B

1
-B

7
 are constants to be determined from the boundary conditions, p

1
 is the real 

root, q
1
 and q

2
 are respectively the real and imaginary parts of the complex roots. It is 

apparent that formulae (26) are characterized by the presence of a double number of 

hyperbolic-harmonic terms, due to the fact that the characteristic equation is bi-quintic instead 

of bi-cubic. Another difference is that the constant term appears in the peel stress for the 

tubular joints and in the shear stress for the flat joints. However, at least qualitatively, the 

distribution of the stresses, for the tubular and flat geometries is similar. The shear stress 

distribution exhibits the typical U-shape, which becomes flat as the overlap length becomes 

shorter. The peel stress distribution exhibits fluctuations in case of long overlap, tends to a U-

shape when the overlap gets short. 

Apart from this, there is no additional difficulty in implementing formulae (26a,b) in a 

spreadsheet, or in an house-made software, for stress calculation. As already remarked in [1], 

formulae based on the elastic approach are not suitable to predict the failure mode in detail, as 

this task requires the use of damage or fracture mechanics. However, the engineering 

usefulness of formulae like (26) or (28) is in the ease of building design tools, suitable to 

assess in quick manner the dimensions or the service load of bonded joints (as done, for 

instance, in [13] and [14]), a situation in which the assumption of elastic behaviour is 

acceptable. Another aspect of interest in the elastic formulae is in the fact that the obtained 

results can be regarded as the description of the “far field” stresses, upon which the analysis 

of the “local” stresses related to the edge singularity can be based (as tried in [15]). 



7. Conclusions 

Starting from a state-of-the-art review and FE results carried out in a companion paper, this 

work reconsidered the classical model by Lubkin and Reissner for the tubular joint under 

axial loading, and established a solution procedure based on the Laplace transform. The 

difficulty due to the fact that in this application the known conditions are given as boundary 

values, instead of initial values like in standard Laplace transforming, was overcome. The 

main achievement is that the solution is explicitly obtained in closed form, and contains more 

terms of hyperbolic × harmonic type with respect to the case of the flat single lap joint. 

The list of numerical results published by Lubkin and Reissner was compared to the results 

given by the obtained formulae. In general a perfect match was found, except for a systematic 

difference in a series of cases for which it was discovered that the value of the 

“elastothickness” parameter should be 5 instead of 4. The obtained formulae can be easily 

implemented in a spreadsheet or computer program to build a software tool for joint design. 
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