39 research outputs found

    Increasing Campus Sense of Belonging through LLC Participation: To Gems Camp We Go

    Get PDF
    Gemstone seeks to develop students’ research and collaboration skills, foster leadership opportunities, and provide a sense of belonging on a large campus utilizing the Best Practices Model (BPM) and a variety of high impact practices (HIPs), like a Gemstone-specific orientation program called Gems Camp. While studies have demonstrated that LLCs increase students’ sense of belonging, the goal of this study is to explicitly test via propensity score matching if (a) enrollment in the Gemstone Honors Program increases sense of belonging compared to university students not in Gemstone and (b) attendance at Gems Camp increases sense of belonging in Gemstone students. Gemstone students (N=221) had an increased sense of belonging compared to matched university students (N=221). Moreover, Gemstone students who attended Gems Camp (N=92) had an increased sense of belonging compared to matched Gemstone students who did not attend Gems Camp (N=92). In conclusion, the Gemstone Honors Program is an example of an LLC with scaffolded high impact practices, such as intentional first year programming, undergraduate research, and collaborative projects, that promotes an increase in students’ sense of belonging, providing a model for other LLCs to consider in their programming efforts

    Use of Annual Phosphorus Loss Estimator (APLE) Model to Evaluate a Phosphorus Index

    Get PDF
    The Phosphorus (P) Index was developed to provide a relative ranking of agricultural fields according to their potential for P loss to surface water. Recent efforts have focused on updating and evaluating P Indices against measured or modeled P loss data to ensure agreement in magnitude and direction. Following a recently published method, we modified the Maryland P Site Index (MD-PSI) from a multiplicative to a component index structure and evaluated the MD-PSI outputs against P loss data estimated by the Annual P Loss Estimator (APLE) model, a validated, field-scale, annual P loss model. We created a theoretical dataset of fields to represent Maryland conditions and scenarios and created an empirical dataset of soil samples and management characteristics from across the state. Through the evaluation process, we modified a number of variables within the MD-PSI and calculated weighting coefficients for each P loss component. We have demonstrated that our methods can be used to modify a P Index and increase correlation between P Index output and modeled P loss data. The methods presented here can be easily applied in other states where there is motivation to update an existing P Index

    Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic

    Get PDF
    The role of iron in enhancing phytoplankton productivity in high nutrient, low chlorophyll oceanic regions was demonstrated first through iron-addition bioassay experiments1 and subsequently confirmed by large-scale iron fertilization experiments2. Iron supply has been hypothesized to limit nitrogen fixation and hence oceanic primary productivity on geological timescales3, providing an alternative to phosphorus as the ultimate limiting nutrient4. Oceanographic observations have been interpreted both to confirm and refute this hypothesis5, 6, but direct experimental evidence is lacking7. We conducted experiments to test this hypothesis during the Meteor 55 cruise to the tropical North Atlantic. This region is rich in diazotrophs8 and strongly impacted by Saharan dust input9. Here we show that community primary productivity was nitrogen-limited, and that nitrogen fixation was co-limited by iron and phosphorus. Saharan dust addition stimulated nitrogen fixation, presumably by supplying both iron and phosphorus10, 11. Our results support the hypothesis that aeolian mineral dust deposition promotes nitrogen fixation in the eastern tropical North Atlantic

    Towards a science of climate and energy choices

    Get PDF
    The linked problems of energy sustainability and climate change are among the most complex and daunting facing humanity at the start of the twenty-first century. This joint Nature Energy and Nature Climate Change Collection illustrates how understanding and addressing these problems will require an integrated science of coupled human and natural systems; including technological systems, but also extending well beyond the domain of engineering or even economics. It demonstrates the value of replacing the stylized assumptions about human behaviour that are common in policy analysis, with ones based on data-driven science. We draw from and engage articles in the Collection to identify key contributions to understanding non-technological factors connecting economic activity and greenhouse gas emissions, describe a multi-dimensional space of human action on climate and energy issues, and illustrate key themes, dimensions and contributions towards fundamental understanding and informed decision making

    Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB3016, doi:10.1029/2008GB003440.We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in the presence of anthropogenic pollutants and soluble Fe from combustion sources. Simulations with increasing Fe and increasing Fe and N inputs raised simulated marine nitrogen fixation, with the majority of the increase in the subtropical North and South Pacific, and raised primary production and export in the high-nutrient low-chlorophyll (HNLC) regions. Increasing N inputs alone elevated small phytoplankton and diatom production, resulting in increased phosphorus (P) and Fe limitation for diazotrophs, hence reducing nitrogen fixation (∌6%). Globally, the simulated primary production, sinking particulate organic carbon (POC) export. and atmospheric CO2 uptake were highest under combined increase in Fe and N inputs compared to preindustrial control. Our results suggest that increasing combustion iron sources and aerosol Fe solubility along with atmospheric anthropogenic nitrogen deposition are perturbing marine biogeochemical cycling and could partially explain the observed trend toward increased P limitation at station ALOHA in the subtropical North Pacific. Excess inorganic nitrogen ([NO3 −] + [NH4 +] − 16[PO4 3−]) distributions may offer useful insights for understanding changing ocean circulation and biogeochemistry.This work was supported by funding from NSF grant OCE-0452972 to J. K. Moore and C. S. Zender. Computations were supported by the Earth System Modeling Facility at UCI (NSFATMO321380) and by the Climate Simulation Laboratory at National Center for Atmospheric Research. The National Center for Atmospheric Research is sponsored by the U.S. National Science Foundation. N.M. would like to acknowledge the assistance of NSF– Carbon and Water (ATM-0628472), and N.M., S.D., and C.L. would like to acknowledge the assistance of NASA-IDS (NNX07AL80G)

    Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB4028, doi:10.1029/2004GB002220.A global three-dimensional marine ecosystem model with several key phytoplankton functional groups, multiple limiting nutrients, explicit iron cycling, and a mineral ballast/organic matter parameterization is run within a global ocean circulation model. The coupled biogeochemistry/ecosystem/circulation (BEC) model reproduces known basin-scale patterns of primary and export production, biogenic silica production, calcification, chlorophyll, macronutrient and dissolved iron concentrations. The model captures observed high nitrate, low chlorophyll (HNLC) conditions in the Southern Ocean, subarctic and equatorial Pacific. Spatial distributions of nitrogen fixation are in general agreement with field data, with total N-fixation of 55 Tg N. Diazotrophs directly account for a small fraction of primary production (0.5%) but indirectly support 10% of primary production and 8% of sinking particulate organic carbon (POC) export. Diatoms disproportionately contribute to export of POC out of surface waters, but CaCO3 from the coccolithophores is the key driver of POC flux to the deep ocean in the model. An iron source from shallow ocean sediments is found critical in preventing iron limitation in shelf regions, most notably in the Arctic Ocean, but has a relatively localized impact. In contrast, global-scale primary production, export production, and nitrogen fixation are all sensitive to variations in atmospheric mineral dust inputs. The residence time for dissolved iron in the upper ocean is estimated to be a few years to a decade. Most of the iron utilized by phytoplankton is from subsurface sources supplied by mixing, entrainment, and ocean circulation. However, owing to the short residence time of iron in the upper ocean, this subsurface iron pool is critically dependent on continual replenishment from atmospheric dust deposition and, to a lesser extent, lateral transport from shelf regions.This work was funded by NSF grant OCE-0222033 and the National Center for Atmospheric Research

    Social change and the family: Comparative perspectives from the west, China, and South Asia

    Full text link
    This paper examines the influence of social and economic change on family structure and relationships: How do such economic and social transformations as industrialization, urbanization, demographic change, the expansion of education, and the long-term growth of income influence the family? We take a comparative and historical approach, reviewing the experiences of three major sociocultural regions: the West, China, and South Asia. Many of the changes that have occurred in family life have been remarkably similar in the three settings—the separation of the workplace from the home, increased training of children in nonfamilial institutions, the development of living arrangements outside the family household, increased access of children to financial and other productive resources, and increased participation by children in the selection of a mate. While the similarities of family change in diverse cultural settings are striking, specific aspects of change have varied across settings because of significant pre-existing differences in family structure, residential patterns of marriage, autonomy of children, and the role of marriage within kinship systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45661/1/11206_2005_Article_BF01124383.pd

    Fertility Regulation

    Get PDF
    In the past two centuries the proportion of couples using some form of conscious pregnancy-prevention has risen from close to zero to about two-thirds. In European populations this radical change in behaviour occurred largely between 1870 and 1930 without the benefit of highly effective methods. In Asia, Africa and Latin America, the change took place after 1950 since when the global fertility rate has halved from 5.0 births to 2.5 births per woman. In this chapter we describe the controversies surrounding the idea of birth control and the role of early pioneers such as Margaret Sanger; the advances in contraceptive and abortion technologies; the ways in which family planning has been promoted by many governments, particularly in Asia; trends in use of specific methods; the problems of discontinuation of use; and the incidence of unintended pregnancies and abortions
    corecore