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Abstract
The Phosphorus (P) Index was developed to provide a relative 
ranking of agricultural fields according to their potential for P loss 
to surface water. Recent efforts have focused on updating and 
evaluating P Indices against measured or modeled P loss data 
to ensure agreement in magnitude and direction. Following a 
recently published method, we modified the Maryland P Site Index 
(MD-PSI) from a multiplicative to a component index structure 
and evaluated the MD-PSI outputs against P loss data estimated 
by the Annual P Loss Estimator (APLE) model, a validated, field-
scale, annual P loss model. We created a theoretical dataset 
of fields to represent Maryland conditions and scenarios and 
created an empirical dataset of soil samples and management 
characteristics from across the state. Through the evaluation 
process, we modified a number of variables within the MD-PSI 
and calculated weighting coefficients for each P loss component. 
We have demonstrated that our methods can be used to modify 
a P Index and increase correlation between P Index output and 
modeled P loss data. The methods presented here can be easily 
applied in other states where there is motivation to update an 
existing P Index.

Use of Annual Phosphorus Loss Estimator (APLE) Model  
to Evaluate a Phosphorus Index

Nicole M. Fiorellino,* Joshua M. McGrath, Peter A. Vadas, Carl H. Bolster, and Frank J. Coale

Phosphorus (P) loss to surface waters from point or non-
point sources can contribute to eutrophication, which is a 
major water quality problem globally (King et al., 2014). 

Eutrophication is an important issue in the Chesapeake Bay 
Watershed and especially in the state of Maryland, which sur-
rounds the Chesapeake Bay (Boynton, 2000). Agriculture in the 
bay watershed has been named as one of the primary nonpoint 
sources of P leading to eutrophication (Sharpley et al., 2003).

Often, a small proportion of the agricultural landscape that 
is hydrologically connected and has sources for P loss (e.g., high 
soil P concentrations) is responsible for the majority of P loss to 
surface water (Gburek and Sharpley, 1998; Sharpley et al., 2003). 
The P Index was developed as a tool to identify agricultural fields 
that have a high risk of P loss due to the coinciding presence of P 
sources and transport pathways (Lemunyon and Gilbert, 1993; 
Nelson and Shober, 2012; Sharpley et al., 2012). Additionally, P 
Indices can help guide producers in the adoption of management 
practices to reduce the risk of P loss. The P Index was designed 
to be user friendly by using simple calculations and requiring 
minimal input data (Lemunyon and Gilbert, 1993; Gburek et 
al., 2000; Djodjic and Bergström, 2005).

Phosphorus Indices exist in different versions across the 
United States, with differences in mathematical formulations, 
input variables, and how the P Index output is interpreted for 
management (Sharpley et al., 2003). It has been shown that 
multiple versions of P Indices can estimate different P loss risk 
and suggest adoption of different management practices for the 
same field (Osmond et al., 2012). This has prompted a call for 
more thorough assessment of P Indices (Sharpley et al., 2012), 
ideally by using local measured P loss data to assess how well P 
Index output agrees in magnitude and direction with measure-
ments. However, when local P loss data are not available, P Index 

Abbreviations: AM, amendment management factor; AMr, runoff application 
method factor; AMv.2, application method factor for PMT-2; APLE, Annual 
Phosphorus Loss Estimator model; comp-PSI, component version of the Maryland 
Phosphorus Site Index; DP, dissolved phosphorus; DPSM3, degree of phosphorus 
saturation ratio estimated from Mehlich-3 elements; FIV, University of Maryland 
Phosphorus Fertility Index Value; M3P, Mehlich-3 extractable phosphorus; MD-PSI, 
Maryland Phosphorus Site Index; PMT-2, Phosphorus Management Tool 2; RUSLE, 
Revised Universal Soil Loss Equation; SCS, Soil Conservation Service; SED, sediment 
transport factor; SM, soil management factor; SR, surface runoff transport risk 
factor; TP, total phosphorus.
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Core Ideas

•	 Our methods expanded upon methods developed by Bolster to 
modify and evaluate PIs.
•	 Our methods provide practical guidance to other states for 
modification of PIs.
•	 A theoretical dataset was simulated to represent geographical 
conditions in Maryland.
•	 Removal of categorical variables and weights increased PI and 
P loss correlation.
•	 Fertilizer and subsurface components should be evaluated like 
surface components.
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outputs can be compared with P loss as estimated by a computer 
model that has been shown to reliably estimate field-scale P loss 
(Bolster, 2011; Sharpley et al., 2011).

The Maryland P Site Index (MD-PSI) has been part of nutri-
ent management planning in Maryland since 2002 (Coale et al., 
2002). Datasets of measured, field-scale P loss that represent the 
wide variations in landscapes and agricultural practices are scarce 
in Maryland (Angle et al., 1984; Kleinman et al., 2007; Vadas et 
al., 2007). Thus, assessment of the MD-PSI was dependent on 
the use of modeled P loss data, in accordance with the recom-
mendations of Sharpley et al. (2011). Bolster et al. (2012) sug-
gested a method for using modeled P loss data to assess a state P 
Index. Those authors used the Annual P Loss Estimator (APLE; 
Vadas et al., 2009; Vadas, 2012) to estimate P loss data to evalu-
ate P Index outputs and recommend changes to the P Index so its 
output agrees better with APLE P loss estimates.

Our objectives in the current study were (i) to use the proof-
of-concept method presented by Bolster et al. (2012) to modify 
the MD-PSI in accordance with the recommendations pre-
sented above by Sharpley et al. (2011), and (ii) by doing so, to 
provide guidance to other states interested in using this method 
to modify their P Indices.

Materials and Methods
Description of APLE and MD-PSI

The APLE model estimates annual, field-scale total P (TP, 
kg ha−1) loss in surface runoff by summing dissolved P (DP) loss 
from manure (DPmanure), soil (DPsoil), and fertilizer (DPfertilizer) 
and particulate-bound P (Psediment) lost through soil erosion 
(Eq. 1]) (Vadas et al., 2009; Vadas, 2012). Unlike process-based 
models, APLE is an empirically based model that relies on rela-
tionships between modeled P loss and measured loss data and 
does not account for the processes governing P loss in the land-
scape (Bolster et al., 2017). The empirical nature of the APLE 
model limits the use of APLE to locations where the data used to 
develop the model were collected; however this allows APLE to 
require minimal input data and training for its use and, in turn, 
allows for widespread ease of use.

Vadas et al. (2009) evaluated APLE against measured P loss data 
for a broad range of field management practices and conditions. 
That evaluation included P loss data from one study in Maryland 
(Angle et al., 1984), as well as studies conducted in North Carolina 
for similar soil types and climate conditions (Westerman et al., 
1985; Westerman et al., 1987; Kleinman et al., 2007; Edgell et al., 
2015). Figure 1 shows the relationship between total P loss esti-
mated by APLE and measured TP loss from the four studies cited, 
as well as an additional study by Kleinman et al. (2007) conducted 
in Maryland, indicating that APLE appropriately estimated P loss 
in Maryland conditions. Moreover, Bolster et al. (2017) found 
that APLE provided slightly more accurate estimates of P loss than 
the  Texas Best Management Practice Evaluation Tool, a more 
complex daily time-step model. This indicated that the use of a 
more complex process-based model may not generate more accu-
rate estimates of P loss than a more user-friendly empirical model. 
These results suggest that APLE can reliably estimate field-scale P 
loss for Maryland conditions and, despite being user friendly and 
empirically based, it is appropriate for evaluation of the MD-PSI, 
as suggested by Bolster et al. (2012).

The APLE model does not include subsurface P loss pathways 
or estimates of P delivery beyond the edge of field. We recog-
nize that subsurface DP transport is a dominant P loss pathway 
from ditch drained fields on the coastal plain of the Delmarva 
Peninsula (Vadas et al., 2007). This P loss component was 
included in the MD-PSI and warrants similar evaluation using 
an appropriate P loss model. However, the APLE model was 
used in the present study; therefore, the subsurface component 
of the MD-PSI was not included in the present evaluation.

Moreover, DP loss from fertilizer was also omitted from this 
assessment, as the empirical dataset did not contain sites with 
a planned fertilizer P application. This is typical in Maryland, 
where fertilizer P would not be applied to fields with high soil P 
concentration. Therefore the APLE TP loss estimate used for the 
present evaluation is:

APLE TP = DPmanure + DPsoil + Psediment [1]

Required model inputs for the DPmanure calculation include 
annual rainfall, annual runoff, manure and fertilizer application 
rates and methods, and associated P properties. Inputs for DPsoil 
include Mehlich-3 soil P (M3P, mg kg−1) and annual runoff. 
Inputs for Psediment include M3P (mg kg−1), soil clay and organic 
matter content (%), and annual sediment loss.

Following recommendations from Bolster et al. (2012), the 
formulation of the MD-PSI used in this evaluation represented 
a component format similar to that of APLE. We refer to the 
MD-PSI formulation here as the component version of the 
MD-PSI (comp-PSI). The MD comp-PSI equation was struc-
tured as follows:

comp-PSI = Particulate + SoilDP + ManureDP [2]

where

Particulate = SED ´ FIV 
SoilDP = SR ´ DPSm3 
ManureDP = SR ´ (SPSC ´ manureP2O5 ´ AMr) 

where SED is the sediment transport factor with possible values 
of 2, 4, 6, 8, and 10; FIV is the University of Maryland P Fertility 
Index Value; SR is the surface runoff transport risk factor 

Fig. 1. Measured total phosphorus (P) loss from Maryland and sur-
rounding states versus modeled total P loss estimated by the Annual 
P Loss Estimator (APLE) model. Regression is significant at P < 0.0001.
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(Supplemental Table S4); DPSM3 is the degree of P saturation 
ratio (Sims et al., 2002) using Mehlich-3 extractable concentra-
tions of P, Fe, and Al; PSC is the P source coefficient for each 
P amendment; manure P2O5 is the quantity of P2O5 applied in 
manure (kg P ha−1); and AMr is runoff application method factor 
with possible values of 0, 0.2, 0.4, 0.6, and 0.8 (Supplemental 
Table S5). The FIV is a unitless index value used in Maryland 
to represent soil-test P concentrations from selected soil extracts 
(such as Bray, Mehlich-1, or Mehlich-3) (McGrath, 2006). 
Phosphorus FIV of 150 is approximately equal to 122 to 142 mg 
kg−1 M3P. The P loss components of the comp-PSI corresponded 
to the P loss outputs of APLE (Particulate:Psediment, SoilDP:DPsoil, 
and ManureDP:DPmanure).

Creation of Independent Datasets  
for MD comp-PSI Evaluation

The first step in our evaluation was to generate datasets as input 
for both APLE and the MD comp-PSI. Following the methods 
of Bolster et al. (2012), we generated two independent datas-
ets containing site, management, and P source data represent-
ing Maryland farm fields. The first was a “theoretical” dataset of 
possible values for these variables and was used to identify where 
modifications to the comp-PSI equation might be needed to agree 
with APLE output. The second, “empirical” dataset consisted of 
actual site information collected from farms across Maryland and 
was used to evaluate the modifications made to the comp-PSI.

Our theoretical dataset represented combinations of physi-
cal and management conditions that could potentially exist in 
Maryland fields. The dataset initially consisted of 15,000 repre-
sentative “fields” generated using SAS 9.3 (SAS Institute, 2009). 
Variables necessary to calculate MD-PSI and APLE output were 
included for each field (Supplemental Tables S1–S3). Values for 
some variables were randomly assigned using a uniform distri-
bution within a predefined range to ensure an equal probabil-
ity of being present throughout the dataset (Bolster, 2011). The 
range for each variable was defined using literature values or the 
range observed in the empirical dataset (Supplemental Tables 
S2 and S3). We obtained data for each soil type by county from 
the Soil Survey Geographic Database (SSURGO) and 30 yr of 
daily precipitation data by Maryland county from the Parameter-
Elevation Regressions on Independent Slopes Model (PRISM) 
Climate Group at Oregon State University (PRISM Climate 
Group, 2015). Soil erosion was estimated using RUSLE (Revised 
Universal Soil Loss Equation), and annual runoff was estimated 
using the Soil Conservation Service (SCS) Curve Number 
method (USDA-SCS, 1972; Renard et al., 1997). The soil ero-
sion and runoff values were used as input for APLE calculations. 
A full description of value assignment to each variable is pre-
sented in the Supplemental Material, as well as a detailed descrip-
tion of the calculation of runoff for the theoretical dataset.

For the empirical dataset, we collected physical data and soil 
from 382 agricultural fields across Maryland between 2011 and 
2012. Physical data included site characteristics and field man-
agement practices required as input for APLE and the comp-
PSI (Supplemental Tables S2 and S3). Clinometers were used to 
determine field slope. Soil samples were collected using a hand 
sample probe (0- to 20-cm depth). We collected a minimum of 15 
subsamples per field and combined them into one composite soil 

sample. Sampled fields ranged in size from 0.2 to 45 ha. Soils were 
dried (60°C) and ground (2 mm) for Mehlich-3 (Mehlich, 1984) 
extraction (1:10 soil/0.2 M CH3COOH + 0.25 M NH4NO3 + 
0.015 M NH4F + 0.13 M HNO3 + 0.0001 M ethylenediaminetet-
raacetic acid [EDTA]). Phosphorus, iron (M3Fe), and aluminum 
(M3Al) concentrations in the extracts were determined by induc-
tively coupled plasma atomic emission spectroscopy (ICP–AES). 
Mehlich-3 P saturation ratio (PSRM3, Eq. [3]) was calculated using 
the molar concentrations of M3P, M3Fe, and M3Al and then used 
to estimate the ammonium oxalate-equivalent DPS (DPSM3) using 
the method of Sims et al. (2002):

+
= M3

M3
PSR 0.19

DPS
0.0042  

[3]

where

=
+M3

M3P
PSR

M3Fe M3Al
 

The comp-PSI is required on fields where producers plan to 
apply P and where P-FIV exceeds 150. Some fields in the empiri-
cal dataset did not have a planned P application or were below 
the threshold P-FIV value. In these cases, we randomly assigned 
FIV using a uniform distribution from 150 to 913 (the maxi-
mum FIV present in the empirical dataset) and calculated M3P 
using the conversion from McGrath (2006). When a P applica-
tion was not planned, we assumed a manure application follow-
ing methods for the theoretical dataset.

In some instances, values for variables in the theoretical data-
set fell within defined ranges but, when combined, produced 
values for RUSLE or DPSM3 greater than commonly observed in 
Maryland. If estimated sediment loss was >18 Mg ha−1 (8 t ac−1) 
or DPSM3 values were >120%, they were eliminated from the 
theoretical dataset. After elimination, the final theoretical data-
set contained 10,249 observations. Fields with RUSLE values 
>18 Mg ha−1 were also eliminated from the empirical dataset 
(final n = 354).

Output Comparison and Development  
of Weighting Factors

For each field, we used data from the theoretical dataset to cal-
culate comp-PSI values and estimate P loss with APLE. We then 
compared comp-PSI and APLE output by calculating Pearson 
correlation coefficients (r) using the CORR procedure in SAS 9.3 
(SAS Institute, 2009). We used this process to develop modifica-
tions for the comp-PSI so its output would better agree with APLE 
P loss estimates. This entailed comparison between comp-PSI com-
ponents and APLE output (e.g., SoilDP from the comp-PSI and 
DPsoil from APLE), as well as the final comp-PSI score and TP loss 
predicted by APLE. Regression analysis using the REG procedure 
in SAS 9.3 (SAS Institute, 2009) was used to calculate slope of the 
regression line between TP estimated by APLE and TP comp-PSI 
score for a subset of data points in the theoretical dataset.

Following modifications to the comp-PSI components, 
weighting coefficients (W) were calculated for each of the P loss 
components in the modified comp-PSI. Following the equa-
tion derived from Bolster et al. (2012), the difference between 
the logarithm of the APLE P loss component score and the 
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logarithm of the comp-PSI component score was calculated for 
all fields in the theoretical dataset. The weighting factor was then 
determined as the exponent of the mean of the difference of the 
component outputs:

( )S - -

=
logAPLE logcomp PSI

nW e  
[4]

Weighting factors were intended to ensure that relative P loss 
from the different comp-PSI components agreed with APLE.

Once all modifications were made and weighting factors 
were calculated for the components of the modified comp-PSI 
equation, the resulting equation was named the P Management 
Tool 2 (PMT-2). Additional management factors were included 
in the PMT-2 to promote the use of Maryland-specific benefi-
cial management practices. Although these factors did not have 
parallel variables in APLE, we determined that the present study 
was the appropriate outlet to include new management factors 
in the PMT-2 equation and evaluate their use. The final PMT-2 
score was calculated for all fields in the empirical dataset and 
then correlated to its corresponding APLE output.

Results and Discussion
MD comp-PSI Revisions Using Theoretical Data and APLE
Particulate Component

The particulate P loss component of the comp-PSI equa-
tion was strongly correlated to the sediment P loss estimated by 
APLE for the theoretical dataset (r = 0.84***, Fig. 2a), but the 
relationship exhibited a stepwise pattern. The strong correlation 
resulted from similar variables being used in both the comp-PSI 
and APLE, which rely on M3P and RUSLE erosion calculations 
to estimate particulate-bound P loss. The categorical nature of 
the SED variable in the comp-PSI caused the stepwise pattern 
observed in Fig. 2a. Because particulate P loss is actually a continu-
ous function of erosion rate, we eliminated this stepwise pattern 
by replacing the categorical SED factor in the comp-PSI with 
the numerical estimate of sediment loss predicted by RUSLE (in 
tons ac−1 yr−1). Phosphorus Indices across the United States com-
monly use RUSLE to estimate particulate-bound P loss (Sharpley 
et al., 2003). This modification and calculated weighting factor 
(W =  0.154) improved the correlation coefficient between the 
comp-PSI particulate component and particulate P loss esti-
mated by APLE (r = 0.92***, Fig. 2b). This demonstrates a poten-
tial challenge in having P Index scores relate well to measured or 
modeled P loss data when a P Index uses categorical weighting fac-
tors, which is common. The calculated weighting factor (W) also 
decreased the range of values for the PMT-2 particulate score from 
6000 to 800. Equations for particulate P loss for APLE, comp-PSI, 
and PMT-2 are detailed in Table 1.

Soil Dissolved P Component
A data cloud with a general linear trend was observed for the 

correlation between the SoilDP component of the comp-PSI 
and soil DP loss estimated by APLE for the theoretical dataset 
(r = 0.64***, Fig. 3a). Despite the general correlation, there were 
distinct groups of data present in Fig. 3a due to the categorical 
SR factor in the comp-PSI. Because soil DP loss is actually a con-
tinuous function of runoff, we replaced the categorical SR factor 
used to index transport risk in the SoilDP component, with 

annual runoff (mm) calculated using the SCS Curve Number 
method (USDA-SCS, 1972). These runoff values were the same 
as used for APLE input. We retained DPSM3 as the source factor 
for the SoilDP component in the PMT-2; however, a conversion 
factor of 0.0259 was included to relate soil DPSM3 to DP concen-
trations (mg P L−1) in runoff, as Vadas et al. (2005b) determined 
by regression. Modifying the comp-PSI SoilDP component 
resulted in a strong linear correlation between PMT-2 and soil 
DP estimated by APLE (r = 0.99***, Fig. 3b). The modifications 
to the SoilDP component and the inclusion of the weighting 
factor calculated using Eq. [4] (W = 0.67) decreased the range of 
values for the PMT-2 SoilDP score (Fig. 3b) from ~1750 to 6 for 
the PMT-2 SoilDP score. Equations for soil DP loss for APLE, 
comp-PSI, and PMT-2 are detailed in Table 1.

Manure Dissolved P Component
Initially, a poor correlation was observed between the comp-

PSI ManureDP component and the APLE-estimated DP loss 
from manure (r = 0.09***, Fig. 4a). This indicated that the comp-
PSI approach poorly represented the risk of P loss from applied 

Fig. 2. Modeled particulate phosphorus (P) loss in kg ha−1 as esti-
mated by the Annual Phosphorus Loss Estimator (APLE) model versus 
(a) the particulate component of the component version of the 
Maryland P Site Index (comp-PSI) and (b) the particulate component 
of the P Management Tool 2 (PMT-2) for the theoretical dataset (n = 
10249). Correlations are significant at P < 0.0001.
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manure when compared with APLE manure DP output. To be 
more consistent with the APLE approach, we replaced the cat-
egorical SR variable in the comp-PSI ManureDP component 
with the ratio of runoff to rainfall raised to the power of 1.25, 
as is documented for APLE (Vadas et al., 2005a; Vadas, 2012). 

Because we adopted the APLE approach for the ManureDP 
component instead of a categorical SR variable, we also replaced 
the source factor for the comp-PSI ManureDP component (PSC 
´ manure P2O5 ´ AMr) by the quantity of P applied to a field 
multiplied by the proportion of manure TP that is water extract-
able (WEP%), as this is the quantity of P that is dissolved from 

Table 1. Variables included for each phosphorus (P) loss component equation (Particulate, SoilDP [dissolved P], ManureDP) within the Annual P Loss 
Estimator (APLE), component version of the Maryland P Site Index (comp-PSI) and the final P Management Tool 2 (PMT-2) equation.

Equation
Components†

Particulate SoilDP ManureDP
APLE RUSLE ´ soil total P ´  

erosion enrichment ratio
Soil labile P ´ extraction coefficient ´  

annual runoff
(Rainfall/Runoff)1.25 ´ manure P2O5 ´  

WEP% ´ manure incorporated
comp-PSI SED ´ FIV SR ´ DPSM3 SR ´ S(PSC ´ manure P2O5 ´ AMr)
PMT-2 0.155(RUSLE ´ 2.24) ´ FIV 0.67(Runoff  ´ 0.01) ´  

(0.0259 ´ DPSM3) ´ SM
1.11(Rainfall/Runoff)1.25 ´ manure P2O5 ´ 

WEP% ´ AMv.2 ´ AM

† RUSLE, Revised Universal Soil Loss Equation; WEP%, percentage of water-extractable P; SED, sediment transport factor; FIV, University of Maryland P Fertility 
Index Value; SR, surface runoff transport risk factor; DPSM3, degree of P saturation ratio estimated from Mehlich-3 elements; PSC, P source coefficient; AMr, 
runoff application method factor; SM, soil management factor; AMv.2, application method factor for PMT-2; AM, amendment management factor.

Fig. 3. Modeled soil dissolved phosphorus (DP) loss in kg ha−1 as 
estimated by the Annual Phosphorus Loss Estimator (APLE) model 
versus (a) the SoilDP component of the component version of the 
Maryland P Site Index (comp-PSI) and (b) the SoilDP component of 
the P Management Tool 2 (PMT-2) for the theoretical dataset (n = 
10249). The unique weighting coefficients included in PMT-2 modi-
fied the scale of the x-axis from (a) to (b). Correlations are significant 
at P < 0.0001.

Fig. 4. Modeled manure dissolved phosphorus (DP) loss in kg ha−1 as 
estimated by the Annual Phosphorus Loss Estimator (APLE) model 
versus (a) the ManureDP component of the component version of 
the Maryland P Site Index (comp-PSI) by manure type and (b) the 
ManureDP component of the P Management Tool 2 (PMT-2) by 
manure type for the theoretical dataset (n = 10249). The unique 
weighting coefficients included in PMT-2 modified the scale of the 
x-axis from (a) to (b). Correlations are significant at P < 0.0001.
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manure during a rain event (Vadas et al., 2005a). The manure 
source was then multiplied by the application method factor 
(AMv.2, Supplemental Table S6), which represented amendment 
application practices and was similar to the AMr factor in the 
comp-PSI. This was the only categorical factor that remained in 
the comp-PSI equation and was included for the comparison of 
the ManureDP component and manure DP predicted by APLE. 
This categorical factor was responsible for the straight-lines clus-
tering of data observed in Fig. 4b. The amendment management 
factor (AM) was included in the final PMT-2 equation and has 
possible values of 0.5 and 1. This factor was designed to incorpo-
rate additional field management practices that producers could 
implement, namely the use drainage water filtration to minimize 
P loss. Few producers in Maryland are using the practice, and it 
was not included in the evaluation.

The modifications to the ManureDP component resulted in 
a larger coefficient of correlation between the ManureDP com-
ponent of the PMT-2 and manure DP loss estimated by APLE 
(r = 0.75***, Fig. 4b). The modifications and the inclusion of the 
weighting factor calculated using Eq. [4] (W = 1.11) decreased 
the range of values for the PMT-2 ManureDP component from 
1500 to ~12. The equations for manure DP for APLE, comp-
PSI, and PMT-2 are detailed in Table 1.

The adjusted range of SoilDP and ManureDP values appear 
to more similarly capture the relative proportion of DP lost from 
either soil or manure to the total quantity of P lost given the rela-
tive proportions of DP within the APLE model. When P Indices 
contain appropriately weighted contributing factors, manage-
ment practices can be targeted to the P loss pathway responsible 
for the majority of P loss, thereby maximizing the effectiveness of 
conservation efforts.

Total Surface P Loss
The initial comparison between comp-PSI score and TP 

loss predicted by APLE for the theoretical dataset generated 
a data cloud with a general linear trend and a high correlation 
(r = 0.81***, Fig. 5a). Despite the high correlation, there was low 
sensitivity in the comp-PSI, meaning as the comp-PSI scores 
increased up to ~2500 and estimated TP loss remained below 
~5 kg ha−1. Moreover, the high correlation was likely due to large 
sample size of the theoretical dataset, as well as the generally high 
correlation between the comp-PSI particulate component and 
APLE particulate P loss, as both components were calculated 
similarly. The modifications made to the comp-PSI equation, in 
addition to the calculated weighting factors, increased the corre-
lation of PMT-2 and modeled TP loss (r = 0.91***, Fig. 5b). The 
modifications and weighting factors also alleviated the cluster 
of fields with low modeled P loss and high comp-PSI score. The 
insets of Fig. 5 indicated an improved correlation (r = 0.51*** 
vs. 0.84***, Fig. 5) between PMT-2 and APLE, as well the slope 
of the regression line approaching one, when focusing on data 
points with comp-PSI scores <2500. This indicated increased 
sensitivity in PMT-2 versus comp-PSI and a more similar increase 
in magnitude of PMT-2 scores as modeled TP increased.

Generally, particulate P loss comprises the greatest propor-
tion of TP lost from agricultural fields (Sharpley et al., 2000), 
and the majority of modeled TP loss was particulate P for 77% 
of the fields in the theoretical dataset. For the PMT-2, the 
weighting factors for the P loss components were calculated 

based on relative contribution of the different P loss pathways 
within the APLE model, instead of being determined by best 
professional judgment. This gives the end user confidence in 
the relative proportions of the P loss components within the 
PMT-2 final score.

Verification of PMT-2 Using Empirical Data
The final equation for the PMT-2 is presented in Eq. [5]:

PMT-2 = ParticulateP + SoilDP + Manure DP [5]

where

Particulate P = 0.154 ´ (RUSLE ´ 2.24) ´ FIV 
SoilDP = 0.67 ´ (Runoff ´ 0.01) ´ (0.0259 ´ DPSM3) ´ SM
ManureDP = 1.11 ´ (Runoff/Rainfall)1.25´ manureP2O5  

           ´ (WEP% ´ AMv.2) ´ AM ´ Timing 

where Runoff was annual runoff in mm; SM was the soil man-
agement factor, with possible values of 0.8 and 1; Runoff/
Rainfall was the ratio of runoff (mm) to rainfall (mm); and 

Fig. 5. Comparison of total phosphorus (P) loss in kg ha−1 as esti-
mated by Annual P Loss Estimator (APLE) with (a) total score for the 
component version of the Maryland P Site Index (comp-PSI) and (b) 
P Management Tool 2 (PMT-2) for fields in the theoretical dataset 
(n = 10249). Insets include a subset of data points with comp-PSI 
score <2500 (n = 6684). Correlations are significant at P < 0.0001.
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Timing was the timing of amendment application factor, with 
possible values of 0.8 and 1.

The empirical dataset was used to verify the relationship 
observed between comp-PSI and modeled P loss data for the theo-
retical dataset. Although the correlation between comp-PSI final 
score and estimated total P loss for the empirical dataset was strong 
(r = 0.78***, Fig. 6a), the correlation coefficient increased when 
PMT-2 was compared with modeled total P loss (r = 0.91***, 
Fig. 6b). For each P loss pathway component of the comp-PSI, the 
modifications resulted in high correlation coefficients between P 
loss components of PMT-2 and their corresponding APLE output 
for the empirical dataset (Supplemental Fig. S1–S3).

Implication of Present Work
The methods presented here build on a method originally 

introduced by Bolster et al. (2012), who demonstrated success-
ful improvements to the Kentucky P Index through evaluation 
against APLE (Bolster et al., 2014), and the present work included 
additional modifications specific to conditions in Maryland. First, 
we created a theoretical dataset to ensure consistency of conditions 
within each simulated field. Next, we took this evaluation as an 
opportunity to modify variables within the MD-PSI components. 
Some of the modifications made to the MD-PSI equation included 
removal of categorical variables when possible and the use of vari-
ables from APLE. Certain variables were included in PMT-2 to 
encourage specific management practices, which did not have a 
direct analog in APLE. Nonetheless, this method allowed these 
management factors to be evaluated for agreement with modeled 
P loss. Although more complex, process-based P loss models have 
been used to evaluate P Indices in other states (Bhandari et al., 
2016; Forsberg et al., 2017), the present work demonstrated the 
use of a user-friendly empirical model to estimate P loss and evalu-
ate a P Index. These methods, including the development of a the-
oretical dataset and the collection of an empirical dataset, can be 
easily applied in other states where there is motivation to update an 
existing P Index but expertise in the use of complex, process-based 
models may be absent. We have demonstrated that our methods 
can be used to modify a P Index and increase correlation between 
P Index output and modeled P loss data.

If using the method demonstrated here, P Index develop-
ers should take care that models employed are tested against 
measured P loss data, as has been done for APLE. Nonetheless, 
whether using measured or modeled P loss data, P Index evalu-
ation is limited to a general agreement in direction between P 
Indices and P loss data and similar magnitude of increase in P 
Index values as P loss is increased. Moreover, although we used a 
model due to scarcity of measured P loss data, in some instances 
modeled data were lacking as well. For example, APLE does not 
contain a subsurface DP loss pathway, precluding evaluation of 
this component of PMT-2. Nonetheless, subsurface DP loss is a 
dominant P loss pathway for ditch drained fields in the coastal 
plain of the Delmarva Peninsula (Vadas et al., 2007), and meth-
ods should be developed to complete evaluation of this compo-
nent. There are a number of shared input variables between APLE 
and PMT-2, meaning correlations between the two models may 
be better than correlations between PMT-2 and measured P loss 
data. Phosphorus Index development and modification is advanc-
ing, and the method presented here represents one means for 
developing greater confidence in final P Index scores.
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