217 research outputs found

    Rapid diagnostic tests for molecular surveillance of Plasmodium falciparum malaria -assessment of DNA extraction methods and field applicability

    Get PDF
    Background: The need for new malaria surveillance tools and strategies is critical, given improved global malaria control and regional elimination efforts. High quality Plasmodium falciparum DNA can reliably be extracted from malaria rapid diagnostic tests (RDTs). Together with highly sensitive molecular assays, wide scale collection of used RDTs may serve as a modern tool for improved malaria case detection and drug resistance surveillance. However, comparative studies of DNA extraction efficiency from RDTs and the field applicability are lacking. The aim of this study was to compare and evaluate different methods of DNA extraction from RDTs and to test the field applicability for the purpose of molecular epidemiological investigations. Methods: DNA was extracted from two RDT devices (Paracheck-PfW and SD Bioline Malaria Pf/Pan (R)), seeded in vitro with 10-fold dilutions of cultured 3D7 P. falciparum parasites diluted in malaria negative whole blood. The level of P. falciparum detection was determined for each extraction method and RDT device with multiple nested-PCR and real-time PCR assays. The field applicability was tested on 855 paired RDT (Paracheck-Pf) and filter paper (Whatman (R) 3MM) blood samples (734 RDT negative and 121 RDT positive samples) collected from febrile patients in Zanzibar 2010. RDT positive samples were genotyped at four key single nucleotide polymorphisms (SNPs) in pfmdr1 and pfcrt as well as for pfmdr1 copy number, all associated with anti-malarial drug resistance. Results: The P. falciparum DNA detection limit varied with RDT device and extraction method. Chelex-100 extraction performed best for all extraction matrixes. There was no statistically significant difference in PCR detection rates in DNA extracted from RDTs and filter paper field samples. Similarly there were no significant differences in the PCR success rates and genotyping outcomes for the respective SNPs in the 121 RDT positive samples. Conclusions: The results support RDTs as a valuable source of parasite DNA and provide evidence for RDT-DNA extraction for improved malaria case detection, molecular drug resistance surveillance, and RDT quality control.ACT Consortium through Bill and Melinda Gates Foundation; Swedish International Development Agency (SIDA) [SWE 2009-193]; Swedish Civil Contingencies Agency (MSB) [2010-7991]; Swedish Medical Research Council (VR) [2009-3785]; Goljes Foundationinfo:eu-repo/semantics/publishedVersio

    Essentials of Filoviral Load Quantification

    Get PDF
    Quantitative measurement of viral load is an important parameter in the management of filovirus disease outbreaks because viral load correlates with severity of disease, survival, and infectivity. During the ongoing Ebola virus disease outbreak in parts of Western Africa, most assays used in the detection of Ebola virus disease by more than 44 diagnostic laboratories yielded qualitative results. Regulatory hurdles involved in validating quantitative assays and the urgent need for a rapid Ebola virus disease diagnosis precluded development of validated quantitative assays during the outbreak. Because of sparse quantitative data obtained from these outbreaks, opportunities for study of correlations between patient outcome, changes in viral load during the course of an outbreak, disease course in asymptomatic individuals, and the potential for virus transmission between infected patients and contacts have been limited. We strongly urge the continued development of quantitative viral load assays to carefully evaluate these parameters in future outbreaks of filovirus disease

    Recurrence of visceral and muco-cutaneous leishmaniasis in a patient under immunosuppressive therapy.

    Get PDF
    Leishmaniasis is a protozoan disease caused by parasites of the genus Leishmania, transmitted to humans by sandflies. The diagnosis of leishmaniasis is often challenging as it mimics many other infectious or malignant diseases. The disease can present in three ways: cutaneous, mucocutaneous, or visceral leishmaniasis, which rarely occur together or consecutively. The patient was a 52 years old immunosuppressed Belgian woman with a long history of severe rheumatoid arthritis. She underwent bone marrow biopsy to explore thrombocytopenia. Diagnosis of visceral leishmaniasis was made by identification of Leishman Donovan (LD) bodies in macrophages. Treatment with liposomal amphotericin B was successful. She later developed cutaneous leishmaniasis treated with amphotericin B lipid complex. She next presented with relapsing cutaneous lesions followed by rapidly progressing lymphadenopathies. Biopsy confirmed the diagnosis of leishmaniasis. Treatments by miltefosine, amphotericin B, N-methyl-glucamine antimoniate were subsequently initiated. She later presented a recurrent bone marrow involvement treated with intramuscular paromomycin and miltefosine. She died two years later from leukemia. At the time of death, she presented with a mucosal destruction of the nose. A Leishmania-specific PCR (Polymerase Chain Reaction) identified L. infantum as etiological agent. Clinicians should be aware of the potential concomitant or sequential involvement of multiple anatomic localizations of Leishmania in immunosuppressed patients

    Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells

    Get PDF
    Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control

    Real-time PCR assay and rapid diagnostic tests for the diagnosis of clinically suspected malaria patients in Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than 95% of total malaria cases in Bangladesh are reported from the 13 high endemic districts. <it>Plasmodium falciparum </it>and <it>Plasmodium vivax </it>are the two most abundant malaria parasites in the country. To improve the detection and management of malaria patients, the National Malaria Control Programme (NMCP) has been using rapid diagnostic test (RDT) in the endemic areas. A study was conducted to establish a SYBR Green-based modified real-time PCR assay as a gold standard to evaluate the performance of four commercially-available malaria RDTs, along with the classical gold standard- microscopy.</p> <p>Methods</p> <p>Blood samples were collected from 338 febrile patients referred for the diagnosis of malaria by the attending physician at Matiranga</p> <p>Upazila Health Complex (UHC) from May 2009 to August 2010. Paracheck RDT and microscopy were performed at the UHC. The blood samples were preserved in EDTA tubes. A SYBR Green-based real-time PCR assay was performed and evaluated. The performances of the remaining three RDTs (Falcivax, Onsite Pf and Onsite Pf/Pv) were also evaluated against microscopy and real-time PCR using the stored blood samples.</p> <p>Result</p> <p>In total, 338 febrile patients were enrolled in the study. Malaria parasites were detected in 189 (55.9%) and 188 (55.6%) patients by microscopy and real-time PCR respectively. Among the RDTs, the highest sensitivity for the detection of <it>P. falciparum </it>(including mixed infection) was obtained by Paracheck [98.8%, 95% confidence interval (CI) 95.8-99.9] and Falcivax (97.6%, 95% CI 94.1-99.4) compared to microscopy and real-time PCR respectively. Paracheck and Onsite Pf/Pv gave the highest specificity (98.8%, 95% CI 95.7-99.9) compared to microscopy and Onsite Pf/Pv (98.8, 95% CI 95.8-99.9) compared to real-time PCR respectively for the detection of <it>P. falciparum</it>. On the other hand Falcivax and Onsite Pf/Pv had equal sensitivity (90.5%, 95% CI 69.6-98.8) and almost 100% specificity compared to microscopy for the detection of <it>P. vivax</it>. However, compared to real-time PCR assay RDTs and microscopy gave low sensitivity (76.9%, 95% CI 56.4-91) in detecting of <it>P. vivax </it>although a very high specificity was obtained (99- 100%).</p> <p>Conclusion</p> <p>The results of this study suggest that the SYBR Green-based real-time PCR assay could be used as an alternative gold standard method in a reference setting. Commercially-available RDTs used in the study are quite sensitive and specific in detecting <it>P. falciparum</it>, although their sensitivity in detecting <it>P. vivax </it>was not satisfactory compared to the real-time PCR assay.</p

    Asymptomatic Carriage of Plasmodium in Urban Dakar: The Risk of Malaria Should Not Be Underestimated

    Get PDF
    Introduction: The objective of this study was to measure the rate of asymptomatic carriage of plasmodium in the Dakar region two years after the implementation of new strategies in clinical malaria management. Methodology: Between October and December 2008, 2952 households selected in 50 sites of Dakar area, were visited for interviews and blood sampling. Giemsa-stained thick blood smears (TBS) were performed for microscopy in asymptomatic adult women and children aged 2 to 10 years. To ensure the quality of the microscopy, we performed a polymerase chai

    A protease-based biosensor for the detection of schistosome cercariae

    Get PDF
    Parasitic diseases affect millions of people worldwide, causing debilitating illnesses and death. Rapid and cost-effective approaches to detect parasites are needed, especially in resource-limited settings. A common signature of parasitic diseases is the release of specific proteases by the parasites at multiple stages during their life cycles. To this end, we engineered several modular Escherichia coli and Bacillus subtilis whole-cell-based biosensors which incorporate an interchangeable protease recognition motif into their designs. Herein, we describe how several of our engineered biosensors have been applied to detect the presence and activity of elastase, an enzyme released by the cercarial larvae stage of Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes are responsible for the infection of an estimated 200 million people worldwide. Since our biosensors are maintained in lyophilised cells, they could be applied for the detection of S. mansoni and other parasites in settings without reliable cold chain access

    Imbalanced Lignin Biosynthesis Promotes the Sexual Reproduction of Homothallic Oomycete Pathogens

    Get PDF
    Lignin is incorporated into plant cell walls to maintain plant architecture and to ensure long-distance water transport. Lignin composition affects the industrial value of plant material for forage, wood and paper production, and biofuel technologies. Industrial demands have resulted in an increase in the use of genetic engineering to modify lignified plant cell wall composition. However, the interaction of the resulting plants with the environment must be analyzed carefully to ensure that there are no undesirable side effects of lignin modification. We show here that Arabidopsis thaliana mutants with impaired 5-hydroxyguaiacyl O-methyltransferase (known as caffeate O-methyltransferase; COMT) function were more susceptible to various bacterial and fungal pathogens. Unexpectedly, asexual sporulation of the downy mildew pathogen, Hyaloperonospora arabidopsidis, was impaired on these mutants. Enhanced resistance to downy mildew was not correlated with increased plant defense responses in comt1 mutants but coincided with a higher frequency of oomycete sexual reproduction within mutant tissues. Comt1 mutants but not wild-type Arabidopsis accumulated soluble 2-O-5-hydroxyferuloyl-l-malate. The compound weakened mycelium vigor and promoted sexual oomycete reproduction when applied to a homothallic oomycete in vitro. These findings suggested that the accumulation of 2-O-5-hydroxyferuloyl-l-malate accounted for the observed comt1 mutant phenotypes during the interaction with H. arabidopsidis. Taken together, our study shows that an artificial downregulation of COMT can drastically alter the interaction of a plant with the biotic environment

    Regulation of Macrophage Motility by the Water Channel Aquaporin-1: Crucial Role of M0/M2 Phenotype Switch

    Get PDF
    The water channel aquaporin-1 (AQP1) promotes migration of many cell types. Although AQP1 is expressed in macrophages, its potential role in macrophage motility, particularly in relation with phenotype polarization, remains unknown. We here addressed these issues in peritoneal macrophages isolated from AQP1-deficient mice, either undifferentiated (M0) or stimulated with LPS to orientate towards pro-inflammatory phenotype (classical macrophage activation; M1). In non-stimulated macrophages, ablation of AQP1 (like inhibition by HgCl2) increased by 2-3 fold spontaneous migration in a Src/PI3K/Rac-dependent manner. This correlated with cell elongation and formation of lamellipodia/ruffles, resulting in membrane lipid and F4/80 recruitment to the leading edge. This indicated that AQP1 normally suppresses migration of resting macrophages, as opposed to other cell types. Resting Aqp1-/- macrophages exhibited CD206 redistribution into ruffles and increased arginase activity like IL4/IL13 (alternative macrophage activation; M2), indicating a M0-M2 shift. In contrast, upon M1 orientation by LPS in vitro or peritoneal inflammation in vivo , migration of Aqp1-/- macrophages was reduced. Taken together, these data indicate that AQP1 oppositely regulates macrophage migration, depending on stimulation or not by LPS, and that macrophage phenotypic and migratory changes may be regulated independently of external cues
    corecore