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Essentials of fi loviral load quantifi cation
Lieselotte Cnops, Johan van Griensven, Anna N Honko, Daniel G Bausch, Armand Sprecher, Charles E Hill, Robert Colebunders, Joshua C Johnson, 
Anthony Griffi  ths, Gustavo F Palacios, Colleen S Kraft, Gary Kobinger, Angela Hewlett, David A Norwood, Pardis Sabeti, Peter B Jahrling, 
Pierre Formenty, Jens H Kuhn*, Kevin K Ariën*

Quantitative measurement of viral load is an important parameter in the management of fi lovirus disease outbreaks 
because viral load correlates with severity of disease, survival, and infectivity. During the ongoing Ebola virus disease 
outbreak in parts of Western Africa, most assays used in the detection of Ebola virus disease by more than 44 
diagnostic laboratories yielded qualitative results. Regulatory hurdles involved in validating quantitative assays and 
the urgent need for a rapid Ebola virus disease diagnosis precluded development of validated quantitative assays 
during the outbreak. Because of sparse quantitative data obtained from these outbreaks, opportunities for study of 
correlations between patient outcome, changes in viral load during the course of an outbreak, disease course in 
asymptomatic individuals, and the potential for virus transmission between infected patients and contacts have been 
limited. We strongly urge the continued development of quantitative viral load assays to carefully evaluate these 
parameters in future outbreaks of fi lovirus disease.

Introduction
The mononegaviral family Filoviridae currently has eight 
members, six of which are known to cause human 
disease. Of these six, the two marburgviruses, Marburg 
virus and Ravn virus, cause Marburg virus disease 
(International Classifi cation of Diseases-10 [ICD-10] 
A98.3); and four ebolaviruses, Bundibugyo virus, Ebola 
virus, Sudan virus, and Taï Forest virus, cause Ebola 
virus disease (ICD-10 A98.4).1 Patients typically present 
with a range of non-specifi c signs and symptoms, 
including fever, headache, weak ness, malaise, myalgia, 
conjunctival injection, gastro intestinal disturbances (eg, 
abdominal pain, nausea, vomiting, and diarrhoea), and, 
less frequently, bleeding.1 Marburg virus disease and 
Ebola virus disease are impossible to diff erentiate from 
each other on the basis of clinical observation alone.2 In 
the early phases of disease and in the absence of a 
recognised outbreak, readily distinguishing fi lovirus 
disease from a host of more common causes of systemic 
febrile disease—for example malaria, typhoid fever, 
bacterial gastroenteritis, and other viral haemorrhagic 
fevers such as severe dengue or Lassa fever—is very 
diffi  cult.1 Thus, rapid and safe laboratory diagnosis of 
patients with suspected Marburg virus disease and Ebola 
virus disease is imperative, and should not rely on 
fi lovirus culture, which requires specialised biosafety 
level 4 facilities.

In recent years, the development of fi eld-deployable 
molecular assays, especially RT-PCR, for the diagnosis 
of fi lovirus infection has proved to be an invaluable tool 
for case identifi cation and management, and for general 
outbreak control. At the peak of the massive and ongoing 
outbreak of Ebola virus disease in Western Africa, more 
than 44 laboratories provided such diagnostic services.3 

Serological tests are not particularly useful in diagnosing 
acute fi lovirus infection, since the presence of IgG might 
mean little in a fi lovirus-endemic area and IgM can 
represent diff erent stages of fi loviral disease. Therefore, 
diagnosing recent fi lovirus infection might require 
sequential blood draws to ascertain increasing IgM 

titres.4 Several rapid antigen detection tests (RDTs) have 
been developed, such as ReEBOV, SD Q Line, and 
OraQuick.5–7 However, RDTs have low sensitivity and 
specifi city. Additionally, results obtained with RDTs still 
require confi rmation by PCR, and at best are semi-
quantitative. Nucleic acid detection is thus the most 
common procedure for diagnosing viral diseases, 
including fi lovirus disease, because of its unsurpassed 
specifi city and sensitivity, and its ability to detect acute 
infection. Additionally, the virus does not need to be 
viable at the time of testing.8

Importance of fi lovirus load determination
Real-time RT-PCR provides not only a qualitative 
diagnosis, but also a surrogate measure of the virus 
burden in a sample by determining the cycle threshold, 
which varies inversely with viral load. Measurement of 
viral load is an important parameter in Marburg virus 
disease and Ebola virus disease, because viral load 
correlates with severity of disease, survival, and 
infectivity.9–16 Assessing the viral load, and thus the 
potential infectivity of a patient, can guide triage and 
admission placement to minimise risk of interperson 
trans mission. Viral load measurements are also 
important to better understand the clinical presentation 
and pathogenesis of fi lovirus disease, and to interpret the 
effi  cacy of candidate therapies and vaccines in animal 
models and human beings.17–19 For instance, the interim 
analysis of a favipiravir mono therapy trial in Guinea 
revealed that the product might be effi  cacious against 
Ebola virus when the cycle threshold is 20 or higher, but 
not when it is less than 20.20 For the fi nal analysis, Sissoko 
and colleagues retested all samples with quantitative 
RT-PCR in a reference laboratory in France. Although the 
investigators observed a good correlation between cycle 
threshold values and RNA viral loads, they pointed out 
that the measured cycle threshold values might not be 
universally replicable, because they could vary depending 
on technique and technician experience, and that more 
robust standards are required.21
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The extent of viral load might be the key factor 
explaining the large variation in lethality—which is 
obviously among the most important metrics monitored 
in clinical trials—reported between diff erent fi lovirus 
disease outbreaks, treatment units, and times during 
outbreaks. Variability in lethality might also relate to 
factors such as time from disease onset to presentation 
for care, quality of care available, patient demographics, 
or variant of infecting virus.14,22–24 Accurate viral load 
measurement is also important in interpreting Ebola 
virus persistence in and transmission risk from immune-
privileged body compartments and fl uids,25 including the 
male gonads or semen,25–28 eyes,29 CNS,30 breast milk,31 and 
the intrauterine space in pregnant women.32 Additionally, 
Ebola virus has occasionally been found in sweat and 
urine,33 and in atypical or asymptomatic cases.32 Similar 
reports note the persistence of Marburg virus in the eye,34 
semen,35 and breast milk,36 and in environmental samples. 
Viral load measurement could even be useful in assessing 
environmental decon tamination practices.37

Variability of fi lovirus load determination
Viral load assay results are subject to substantial 
interassay, intra-assay, inter-run, and interindividual 
variability.38,39 Additionally, interpretation of viral load is 
further confounded by the fact that viral load does not 

necessarily correlate with viable replicating fi lovirus.40 
Slight diff erences between assays or genomic templates 
do not substantially aff ect diagnostic performance under 
controlled conditions.41 However, in general, data 
gathered over a long period from multiple sites—eg, 
within and between laboratories—cannot be compared, 
because each site used distinct and specifi c assays under 
variable conditions.42 For instance, a 1–2 log10 diff erence 
in Ebola virus viral load, which may be within the margin 
of error of RT-PCR testing within and between many 
laboratories and assays, might correlate with signifi cant 
diff erences in lethality.10,12–14 Standard curves, generated 
by assessing multiple samples with known quantities of 
fi loviral RNA, can be used to measure the variability of 
results and off er a better understanding of the meaning 
of results across laboratories and time points. However, 
standard curves have rarely been generated under 
outbreak conditions, probably because of the high 
numbers of samples processed and to obtain and provide 
results rapidly.

Several real-time RT-PCR tests for Ebola virus are 
commercially available. Eight of these tests recently 
received emergency use authorisation from the US Food 
and Drug Administration (FDA),43 and one received 
emergency use assessment and listing procedure from 
WHO,44 and are commonly used in the fi eld for diagnostic 

Manufacturer Viruses 
detected

Target gene EUA 
approval 
from the 
FDA

EUAL 
procedure 
approval from 
the WHO

Quali-
tative 
assay

Quanti-
tative 
assay

Limit of detection from 
manufacturer

Limit of detection 
from independent 
evaluation

Sensitivity* 
(%)

Specifi city* 
(%)

EZ1 Real-time 
RT-PCR Assay

US Department 
of Defense

Ebola virus Glycoprotein Yes No Yes Yes† 1000–5000 PFU/mL NA 100% 100%

Ebola Virus NP 
Real-time 
RT-PCR Assay

US Centers for 
Disease Control 
and Prevention

Ebola virus Nucleoprotein Yes No Yes No 30 TCID50/reaction 400 TCID50/mL45 98–100% 100%

Ebola Virus 
VP40 Real-time 
RT-PCR Assay

US Centers for 
Disease Control 
and Prevention

Ebola virus Viral protein 40 Yes No Yes No 30 TCID50/reaction 400 TCID50/mL45 100% 94–100%

FilmArray 
NGDS 
BT-E Assay

Biofi re Defense Ebola virus Unknown Yes No Yes No 10 000 PFU/mL 400 TCID50/mL45 87–92% 100%

FilmArray 
Biothreat-E Test

Biofi re Defense Ebola virus Unknown Yes Yes Yes No 600 000 PFU/mL 400 TCID50/mL45 96% 100%

RealStar 
Ebolavirus 
RT-PCR Kit 1.0

Altona 
Diagnostics 
GmbH

Ebolaviruses 
or Marburg 
virus

RNA-dependent 
RNA polymerase

Yes Yes Yes No 116–675 copies per μL 1250 copies per mL46 NA NA

LightMix Ebola 
Zaire rRT-PCR 
Test

Roche 
Molecular 
Systems

Ebola virus RNA-dependent 
RNA polymerase

Yes No Yes No 4781 PFU/mL 1250 copies per mL46 97·8% 100%

Xpert Ebola 
Assay

Cepheid Ebola virus Glycoprotein + 
nucleoprotein

Yes Yes Yes No 232·4 copies per mL 
or 0·13–1 PFU/mL

232 copies per mL
or 1 PFU/mL47

90–100% 100%

Liferiver Ebola 
Virus Real-time 
RT-PCR Kit

Shanghai ZJ 
BioTech

Ebola virus Unknown No Yes Yes Yes‡ 1000 copies per mL 23·9 copies per 
reaction48 or 
677 copies/mL49

NA NA

EUA=emergency use authorisation. EUAL=emergency use assessment and listing. FDA=US Food and Drug Administration. NA=not applicable. PFU=plaque forming units. TCID50=50% tissue culture infectious 
dose. *Provided by the manufacturers. †Quantitative ability was established by the use of synthetic RNA standard curves but this feature is not part of the FDA EUA version. ‡Not part of EUAL approval from 
WHO, only mentioned in the manual of the manufacturer.

Table: Overview of RT-PCR assays for fi loviruses and their status with the FDA and WHO
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requiring availability and testing of numerous 
predefi ned standards, and is diffi  cult to implement 
under fi eld conditions. A path forward might be gleaned 
from recent concerted international eff orts to develop 
standardised quantitative assays and reference materials 
for other pathogens. For instance, high quality viral load 
clinical and analytical assessments are now possible for 
DNA and other RNA viruses.52,53 These assessments 
include three major commercial methods that are 
approved by the FDA for the measurement of HIV-1 
RNA in plasma: Amplicor Monitor, Versant HIV RNA 
Kit, and NucliSens HIV-1 QT System. The limits of 
detection for these assays range from 10–40 genome 
copies per mL.53 In the fi eld of HIV/AIDS, viral load 
determination has become a routine test and is the basis 
of clinical patient management.54 Although the com-
mutability of some materials might need additional 
work to yield consensus,55 clearly these eff orts have a 
positive eff ect on comparability between assays.56 Eff orts 
towards standardising fi lovirus assays hold the promise 
of similar eff ects and should be vigorously pursued.
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