1,281 research outputs found

    The Deep-Water Circulation of the Indian Ocean

    Get PDF

    A structure in the early Universe at z 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology

    Get PDF
    A Large Quasar Group (LQG) of particularly large size and high membership has been identified in the DR7QSO catalogue of the Sloan Digital Sky Survey. It has characteristic size (volume^1/3) ~ 500 Mpc (proper size, present epoch), longest dimension ~ 1240 Mpc, membership of 73 quasars, and mean redshift = 1.27. In terms of both size and membership it is the most extreme LQG found in the DR7QSO catalogue for the redshift range 1.0 = 1.28, which is itself one of the more extreme examples. Their boundaries approach to within ~ 2 deg (~ 140 Mpc projected). This new, huge LQG appears to be the largest structure currently known in the early universe. Its size suggests incompatibility with the Yadav et al. scale of homogeneity for the concordance cosmology, and thus challenges the assumption of the cosmological principle

    The properties of highly luminous IRAS galaxies

    Get PDF
    From a complete sample of 154 galaxies identified with IRAS sources in a 304 sq deg area centered on the South Galactic Pole, a subsample of 58 galaxies with L sub IR/L sub B > 3 was chosen. Low resolution spectra were obtained for 30% of the subsample and redshifts and relative emission line intensities were derived. As a class these galaxies are very luminous with = 2.9 x 10 to the 11th power L sub 0 and (L sub IR) max = 1.3 x 10 to the 12th power L sub 0. CCD images and JHK photometry were obtained for many of the subsample. The galaxies are for the most part newly identified and are optically faint, with a majority showing evidence of a recent interaction. Radio continuum observations of all galaxies of the subsample were recently obtained at 20 cm VLA with about 75% being detected in a typical integration time of about 10 minutes

    Searching High Redshift Large-Scale Structures: Photometry of Four Fields Around Quasar Pairs at z~1

    Full text link
    We have studied the photometric properties of four fields around the high-redshift quasar pairs QP1310+0007, QP1355-0032, QP0110-0219, and QP0114-3140 at z ~ 1 with the aim of identifying large-scale structures- galaxy clusters or groups- around them. This sample was observed with GMOS in Gemini North and South telescopes in the g', r', i', and z' bands, and our photometry is complete to a limiting magnitude of i' ~ 24 mag (corresponding to ~ M*_i' + 2 at the redshift of the pairs). Our analysis reveals that QP0110-0219 shows very strong and QP1310+0007 and QP1355-0032 show some evidence for the presence of rich galaxy clusters in direct vicinity of the pairs. On the other hand, QP0114-3140 could be an isolated pair in a poor environment. This work suggest that z ~ 1 quasar pairs are excellent tracers of high density environments and this same technique may be useful to find clusters at higher redshifts.Comment: 29 pages, 7 figures, ApJ accepted. Added one figure and 3 references. Some paragraphs was rewritten in sections 1, 3, 5, and 6, as suggested by refere

    A structure in the early Universe at z 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology

    Get PDF
    A Large Quasar Group (LQG) of particularly large size and high membership has been identified in the DR7QSO catalogue of the Sloan Digital Sky Survey. It has characteristic size (volume^1/3) ~ 500 Mpc (proper size, present epoch), longest dimension ~ 1240 Mpc, membership of 73 quasars, and mean redshift = 1.27. In terms of both size and membership it is the most extreme LQG found in the DR7QSO catalogue for the redshift range 1.0 = 1.28, which is itself one of the more extreme examples. Their boundaries approach to within ~ 2 deg (~ 140 Mpc projected). This new, huge LQG appears to be the largest structure currently known in the early universe. Its size suggests incompatibility with the Yadav et al. scale of homogeneity for the concordance cosmology, and thus challenges the assumption of the cosmological principle

    Scaling of Horizontal and Vertical Fixational Eye Movements

    Full text link
    Eye movements during fixation of a stationary target prevent the adaptation of the photoreceptors to continuous illumination and inhibit fading of the image. These random, involuntary, small, movements are restricted at long time scales so as to keep the target at the center of the field of view. Here we use the Detrended Fluctuation Analysis (DFA) in order to study the properties of fixational eye movements at different time scales. Results show different scaling behavior between horizontal and vertical movements. When the small ballistics movements, i.e. micro-saccades, are removed, the scaling exponents in both directions become similar. Our findings suggest that micro-saccades enhance the persistence at short time scales mostly in the horizontal component and much less in the vertical component. This difference may be due to the need of continuously moving the eyes in the horizontal plane, in order to match the stereoscopic image for different viewing distance.Comment: 5 pages, 4 figure

    Competitive aminal formation during the synthesis of a highly soluble, isopropyl-decorated imine porous organic cage

    Get PDF
    The synthesis of a new porous organic cage decorated with isopropyl moieties (CC21) was achieved from the reaction of triformylbenzene and an isopropyl functionalised diamine. Unlike structurally analogous porous organic cages, its synthesis proved challenging due to competitive aminal formation, rationalised using control experiments and computational modelling. The use of an additional amine was found to increase conversion to the desired cage

    A Renormalization Group Approach to Relativistic Cosmology

    Full text link
    We discuss the averaging hypothesis tacitly assumed in standard cosmology. Our approach is implemented in a "3+1" formalism and invokes the coarse graining arguments, provided and supported by the real-space Renormalization Group (RG) methods. Block variables are introduced and the recursion relations written down explicitly enabling us to characterize the corresponding RG flow. To leading order, the RG flow is provided by the Ricci-Hamilton equations studied in connection with the geometry of three-manifolds. The properties of the Ricci-Hamilton flow make it possible to study a critical behaviour of cosmological models. This criticality is discussed and it is argued that it may be related to the formation of sheet-like structures in the universe. We provide an explicit expression for the renormalized Hubble constant and for the scale dependence of the matter distribution. It is shown that the Hubble constant is affected by non-trivial scale dependent shear terms, while the spatial anisotropy of the metric influences significantly the scale-dependence of the matter distribution.Comment: 57 pages, LaTeX, 15 pictures available on request from the Author

    Investigation of biofuel as a potential renewable energy source

    Get PDF
    An accelerating global energy demand, paired with the harmful environmental effects of fossil fuels, has triggered the search for alternative, renewable energy sources. Biofuels are arguably a potential renewable energy source in the transportation industry as they can be used within current infrastructures and require less technological advances than other renewable alternatives, such as electric vehicles and nuclear power. The literature suggests biofuels can negatively impact food security and production; however, this is dependent on the type of feedstock used in biofuel production. Advanced biofuels, derived from inedible biomass, are heavily favoured but require further research and development to reach their full commercial potential. Replacing fossil fuels by biofuels can substantially reduce particulate matter (PM), carbon monoxide (CO) emissions, but simultaneously increase emissions of nitrogen oxides (NOx), acetaldehyde (CH3CHO) and peroxyacetyl nitrate (PAN), resulting in debates concerning the way biofuels should be implemented. The potential biofuel blends (FT-SPK, HEFA-SPK, ATJ-SPK and HFS-SIP) and their use as an alternative to kerosene-type fuels in the aviation industry have also been assessed. Although these fuels are currently more costly than conventional aviation fuels, possible reduction in production costs has been reported as a potential solution. A preliminary study shows that i-butanol emissions (1.8 Tg/year) as a biofuel can increase ozone levels by up to 6% in the upper troposphere, highlighting a potential climate impact. However, a larger number of studies will be needed to assess the practicalities and associated cost of using the biofuel in existing vehicles, particularly in terms of identifying any modifications to existing engine infrastructure, the impact of biofuel emissions, and their chemistry on the climate and human health, to fully determine their suitability as a potential renewable energy source
    • …
    corecore