71 research outputs found
Diquark-Antidiquark with open charm in QCD sum rules
Using the QCD sum rule approach we investigate the possible four-quark
structure of the recently observed charmed scalar mesons
(BELLE) and (FOCUS) and also of the very narrow
, firstly observed by BABAR. We use diquak-antidiquark
currents and work to the order of in full QCD, without relying on
expansion. Our results indicate that a four-quark structure is acceptable for
the resonances observed by BELLE and BABAR: and
respectively, but not for the resonances observed by FOCUS:
.Comment: 6 pages, 5 eps figures; Contribution to the 'Workshop on Light-Cone
QCD and Nonperturbative Hadron Physics 2005 (LC2005)', Cairns-Australi
The Isgur-Wise function in a relativistic model for system
We use the Dirac equation with a ``(asymptotically free) Coulomb + (Lorentz
scalar) linear '' potential to estimate the light quark wavefunction for mesons in the limit . We use these wavefunctions to
calculate the Isgur-Wise function for orbital and radial
ground states in the phenomenologically interesting range . We find a simple expression for the zero-recoil slope, , where is the energy eigenvalue
of the light quark, which can be identified with the parameter
of the Heavy Quark Effective Theory. This result implies an upper bound of
for the slope . Also, because for a very light quark the size of the meson is determined mainly by the
``confining'' term in the potential , the shape of
is seen to be mostly sensitive to the dimensionless
ratio . We present results for the ranges of
parameters , and
light quark masses and compare to existing
experimental data and other theoretical estimates. Fits to the data give:
,
and [ARGUS
'93]; , and
[CLEO '93]; ${\bar\Lambda_{u,d}}^2/Comment: 22 pages, Latex, 4 figures (not included) available by fax or via
email upon reques
Energetics and Possible Formation and Decay Mechanisms of Vortices in Helium Nanodroplets
The energy and angular momentum of both straight and curved vortex states of
a helium nanodroplet are examined as a function of droplet size. For droplets
in the size range of many experiments, it is found that during the pickup of
heavy solutes, a significant fraction of events deposit sufficient energy and
angular momentum to form a straight vortex line. Curved vortex lines exist down
to nearly zero angular momentum and energy, and thus could in principle form in
almost any collision. Further, the coalescence of smaller droplets during the
cooling by expansion could also deposit sufficient angular momentum to form
vortex lines. Despite their high energy, most vortices are predicted to be
stable at the final temperature (0.38 K) of helium nanodroplets due to lack of
decay channels that conserve both energy and angular momentum.Comment: 10 pages, 8 figures, RevTex 4, submitted to Phys. Rev.
Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model
We develop and extend the dynamical string parton model. This model, which is
based on the salient features of QCD, uses classical Nambu-Got\=o strings with
the endpoints identified as partons, an invariant string breaking model of the
hadronization process, and interactions described as quark-quark interactions.
In this work, the original model is extended to include a phenomenological
quantization of the mass of the strings, an analytical technique for treating
the incident nucleons as a distribution of string configurations determined by
the experimentally measured structure function, the inclusion of the gluonic
content of the nucleon through the introduction of purely gluonic strings, and
the use of a hard parton-parton interaction taken from perturbative QCD
combined with a phenomenological soft interaction. The limited number of
parameters in the model are adjusted to and -- data. Utilizing
these parameters, the first calculations of the model for -- and
-- collisions are presented and found to be in reasonable agreement with
a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex
Death and Display in the North Atlantic: The Bronze and Iron Age Human Remains from Cnip, Lewis, Outer Hebrides
YesThis paper revisits the series of disarticulated human remains discovered during the 1980s excavations of the Cnip wheelhouse complex in Lewis. Four fragments of human bone, including two worked cranial fragments, were originally dated to the 1st centuries BC/AD based on stratigraphic association. Osteoarchaeological reanalysis and AMS dating now provide a broader cultural context for these remains and indicate that at least one adult cranium was brought to the site more than a thousand years after the death of the individual to whom it had belonged
Mass spectrum of the axial-vector hidden charmed and hidden bottom tetraquark states
In this article, we perform a systematic study of the mass spectrum of the
axial-vector hidden charmed and hidden bottom tetraquark states using the QCD
sum rules, and identify the as an axial-vector tetraquark state
tentatively.Comment: 24 pages, 38 figures, slight revisio
Baryon polarization in low-energy unpolarized meson-baryon scattering
We compute the polarization of the final-state baryon, in its rest frame, in
low-energy meson--baryon scattering with unpolarized initial state, in
Unitarized BChPT. Free parameters are determined by fitting total and
differential cross-section data (and spin-asymmetry or polarization data if
available) for , and scattering. We also compare our
results with those of leading-order BChPT
Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments
We report on the measurement of inclusive electron scattering off a carbon
target performed with CLAS at Jefferson Laboratory. A combination of three
different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an
invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum
transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous
measurements of the inclusive electron scattering off proton and deuteron,
which cover a similar continuous two-dimensional region of Q2 and Bjorken
variable x, permit the study of nuclear modifications of the nucleon structure.
By using these, as well as other world data, we evaluated the F2 structure
function and its moments. Using an OPE-based twist expansion, we studied the
Q2-evolution of the moments, obtaining a separation of the leading-twist and
the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist
contributions to the F2 moments exhibits the well known EMC effect, compatible
with that discovered previously in x-space. The total higher-twist term in the
carbon nucleus appears, although with large systematic uncertainites, to be
smaller with respect to the deuteron case for n<7, suggesting partial parton
deconfinement in nuclear matter. We speculate that the spatial extension of the
nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure
Leptonic and Semileptonic Decays of Charm and Bottom Hadrons
We review the experimental measurements and theoretical descriptions of
leptonic and semileptonic decays of particles containing a single heavy quark,
either charm or bottom. Measurements of bottom semileptonic decays are used to
determine the magnitudes of two fundamental parameters of the standard model,
the Cabibbo-Kobayashi-Maskawa matrix elements and . These
parameters are connected with the physics of quark flavor and mass, and they
have important implications for the breakdown of CP symmetry. To extract
precise values of and from measurements, however,
requires a good understanding of the decay dynamics. Measurements of both charm
and bottom decay distributions provide information on the interactions
governing these processes. The underlying weak transition in each case is
relatively simple, but the strong interactions that bind the quarks into
hadrons introduce complications. We also discuss new theoretical approaches,
especially heavy-quark effective theory and lattice QCD, which are providing
insights and predictions now being tested by experiment. An international
effort at many laboratories will rapidly advance knowledge of this physics
during the next decade.Comment: This review article will be published in Reviews of Modern Physics in
the fall, 1995. This file contains only the abstract and the table of
contents. The full 168-page document including 47 figures is available at
http://charm.physics.ucsb.edu/papers/slrevtex.p
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
- …