55 research outputs found
The Spin-Dependent Structure Functions of Nuclei in the Meson-Nucleon Theory
A theoretical approach to the investigation of spin-dependent structure
functions in deep inelastic scattering of polarized leptons off polarized
nuclei, based on the effective meson-nucleon theory and operator product
expansion method, is proposed and applied to deuteron and . The explicit
forms of the moments of the deuteron and spin-dependent structure
functions are found and numerical estimates of the influence of nuclear
structure effects are presented.Comment: 42 pages revtex, 7 postscript figures available from above e-mail
upon request. Perugia preprint DFUPG 92/9
Study of the Process e+ e- --> omega pi0 --> pi0 pi0 gamma in c.m. Energy Range 920--1380 MeV at CMD-2
The cross section of the process e+ e- --> omega pi0 --> pi0 pi0 gamma has
been measured in the c.m. energy range 920-1380 MeV with the CMD-2 detector.
Its energy dependence is well described by the interference of the rho(770) and
rho'(1450) mesons decaying to omega pi0. Upper limits for the cross sections of
the direct processes e+ e- --> pi0 pi0 gamma, eta pi0 gamma have been set.Comment: Accepted for publication in PL
Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model (I) -- phenomenological predictions --
Theoretical predictions are given for the light-flavor sea-quark
distributions including the strange quark ones on the basis of the flavor SU(3)
version of the chiral quark soliton model. Careful account is taken here of the
SU(3) symmetry breaking effects due to the mass difference between the strange
and nonstrange quarks. This effective mass difference between the
strange and nonstrange quarks is the only one parameter necessary for the
flavor SU(3) generalization of the model. A particular emphasis of study is put
on the {\it light-flavor sea-quark asymmetry} as exemplified by the observables
as well as on the {\it particle-antiparticle asymmetry} of
the strange quark distributions represented by etc. As for the unpolarized
sea-quark distributions, the predictions of the model seem qualitatively
consistent with the available phenomenological information provided by the NMC
data for , the E866 data for , the CCFR data and Barone et al.'s fit for etc. The
model is shown to give several unique predictions also for the spin-dependent
sea-quark distribution, such that and , although the verification
of these predictions must await more elaborate experimental investigations in
the near future.Comment: 36 pages, 20 EPS figures. The revised version accepted for
publication in Phys. Rev. D. The title has been changed, and the body of the
paper has been divided into two pieces, i.e.. the present one which discusses
the main phenomenological predictions of the model and the other one which
describes the detailed formulation of the flavor SU(3) chiral quark soliton
model to predict light-flavor quark and antiquark distribution functions in
the nucleo
Search for CP violation in D0 and D+ decays
A high statistics sample of photoproduced charm particles from the FOCUS
(E831) experiment at Fermilab has been used to search for CP violation in the
Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We
have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/-
0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) =
+0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second
error is systematic. These asymmetries are consistent with zero with smaller
errors than previous measurements.Comment: 12 pages, 4 figure
Light flavor asymmetry of nucleon sea
The light flavor antiquark distributions of the nucleon sea are calculated in
the effective chiral quark model and compared with experimental results. The
contributions of the flavor-symmetric sea-quark distributions and the nuclear
EMC effect are taken into account to obtain the ratio of Drell-Yan cross
sections , which can match well
with the results measured in the FermiLab E866/NuSea experiment. The calculated
results also match the measured from different
experiments, but unmatch the behavior of derived
indirectly from the measurable quantity
by the FermiLab E866/NuSea
Collaboration at large . We suggest to measure again
at large from precision experiments with careful experimental data
treatment. We also propose an alternative procedure for experimental data
treatment.Comment: 10 pages, 8 figures, final version to appear in EPJ
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
First observation of the decay
Radiative decays of the meson have been studied using a data sample of
about 20 million decays collected by the CMD-2 detector at VEPP-2M
collider in Novosibirsk. From selected events
the decay has been observed for the first time.
\par Under the assumption that the intermediate state
dominates in the decay, the corresponding branching
ratio is .
\par Selected events were used to obtain
for
MeV. \par Using the same data sample, upper limits at 90% CL
have been obtained for the C-violating decay of the :
; and for the P- and CP-violating
decay of the : \par .Comment: 16 pages, 10 figures, Submitted to Phys. Lett.
Quark Model and multiquark system
The discovery of many particles, especially in the 50's, when the firsts
accelerators appeared, caused the searching for a model that would describe in
a simple form the whole of known particles. The Quark Model, based in the
mathematical structures of group theory, provided in the beginning of the 60's
a simplified description of hadronic matter already known, proposing that three
particles, called quarks, would originate all the observed hadrons. This model
was able to preview the existence of particles that were later detected,
confirming its consistency. Extensions of the Quark Model were made in the
beginning of the 70's, focusing in describing observed particles that were
excited states of the fundamental particles and others that presented new
quantum numbers (flavors). Recently, exotic states as tetraquarks and
pentaquarks types, also called multiquarks systems, previewed by the model,
were observed, what renewed the interest in the way as quarks are confined
inside the hadrons. In this article we present a review of the Quark Model and
a discussion on the new exotic states.Comment: In Portugues
Suplementação da dieta de codornas com minerais nas formas orgânicas sobre o desempenho e a qualidade dos ovos
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
- …