9 research outputs found

    The Use of Electronic Data Capture Tools in Clinical Trials: Web-Survey of 259 Canadian Trials

    No full text
    Background: Electronic data capture (EDC) tools provide automated support for data collection, reporting, query resolution, randomization, and validation, among other features, for clinical trials. There is a trend toward greater adoption of EDC tools in clinical trials, but there is also uncertainty about how many trials are actually using this technology in practice. A systematic review of EDC adoption surveys conducted up to 2007 concluded that only 20% of trials are using EDC systems, but previous surveys had weaknesses. Objectives: Our primary objective was to estimate the proportion of phase II/III/IV Canadian clinical trials that used an EDC system in 2006 and 2007. The secondary objectives were to investigate the factors that can have an impact on adoption and to develop a scale to assess the extent of sophistication of EDC systems. Methods: We conducted a Web survey to estimate the proportion of trials that were using an EDC system. The survey was sent to the Canadian site coordinators for 331 trials. We also developed and validated a scale using Guttman scaling to assess the extent of sophistication of EDC systems. Trials using EDC were compared by the level of sophistication of their systems. Results: We had a 78.2% response rate (259/331) for the survey. It is estimated that 41% (95% CI 37.5%-44%) of clinical trials were using an EDC system. Trials funded by academic institutions, government, and foundations were less likely to use an EDC system compared to those sponsored by industry. Also, larger trials tended to be more likely to adopt EDC. The EDC sophistication scale had six levels and a coefficient of reproducibility of 0.901 (P< .001) and a coefficient of scalability of 0.79. There was no difference in sophistication based on the funding source, but pediatric trials were likely to use a more sophisticated EDC system. Conclusion: The adoption of EDC systems in clinical trials in Canada is higher than the literature indicated: a large proportion of clinical trials in Canada use some form of automated data capture system. To inform future adoption, research should gather stronger evidence on the costs and benefits of using different EDC systems

    Statistical issues in first-in-man studies

    No full text
    In March 2006 a first-in-man trial took place using healthy volunteers involving the use of monoclonal antibodies. Within hours the subjects had suffered such adverse effects that they were admitted to intensive care at Northwick Park Hospital. In April 2006 the Secretary of State for Health announced the appointment of Professor (now Sir) Gordon Duff, who chairs the UK's Commission on Human Medicines, to chair a scientific expert group on phase 1 clinical trials. The group reported on December 7th, 2006 (Expert Scientific Group on Clinical Trials, 2006a). Clinical trials have a well-established regulatory basis both in the UK and worldwide. Trials have to be approved by the regulatory authority and are subject to a detailed protocol concerning, among other things, the study design and statistical analyses that will form the basis of the evaluation. In fact, a cornerstone of the regulatory framework is the statistical theory and methods that underpin clinical trials. As a result, the Royal Statistical Society established an expert group of its own to look in detail at the statistical issues that might be relevant to first-in-man studies. The group mainly comprised senior Fellows of the Society who had expert knowledge of the theory and application of statistics in clinical trials. However, the group also included an expert immunologist and clinicians to ensure that the interface between statistics and clinical disciplines was not overlooked. In addition, expert representation was sought from Statisticians in the Pharmaceutical Industry (PSI), an organization with which the Royal Statistical Society has very close links. The output from the Society's expert group is contained in this report. It makes a number of recommendations directed towards the statistical aspects of clinical trials. As such it complements the report by Professor Duff's group and will, I trust, contribute to a safer framework for first-in-man trials in the future. Tim Holt ("President, Royal Statistical Society") Copyright 2007 Royal Statistical Society.

    Assessment of Safety in Newborns of Mothers Participating in Clinical Trials of Vaccines Administered During Pregnancy

    No full text
    corecore