147 research outputs found

    Reinforcement learning of normative monitoring intensities

    Get PDF
    Choosing actions within norm-regulated environments involves balancing achieving one’s goals and coping with any penalties for non-compliant behaviour. This choice becomes more complicated in environments where there is uncertainty. In this paper, we address the question of choosing actions in environments where there is uncertainty regarding both the outcomes of agent actions and the intensity of monitoring for norm violations. Our technique assumes no prior knowledge of probabilities over action outcomes or the likelihood of norm violations being detected by employing reinforcement learning to discover both the dynamics of the environment and the effectiveness of the enforcer. Results indicate agents become aware of greater rewards for violations when enforcement is lax, which gradually become less attractive as the enforcement is increased

    Structural Simplicity as a Restraint on the Structure of Amorphous Silicon

    Get PDF
    Understanding the structural origins of the properties of amorphous materials remains one of the most important challenges in structural science. In this study we demonstrate that local ‘structural simplicity’, embodied by the degree to which atomic environments within a material are similar to each other, is powerful concept for rationalising the structure of canonical amorphous material amorphous silicon (a-Si). We show, by restraining a reverse Monte Carlo refinement against pair distribution function (PDF) data to be simpler, that the simplest model consistent with the PDF is a continuous random network (CRN). A further effect of producing a simple model of a-Si is the generation of a (pseudo)gap in the electronic density of states, suggesting that structural ho- mogeneity drives electronic homogeneity. That this method produces models of a-Si that approach the state-of-the-art without the need for chemically specific restraints (beyond the assumption of homogeneity) suggests that simplicity-based refinement approaches may allow experiment-driven structural modelling techniques to be developed for the wide variety of amorphous semiconductors with strong local order.Sidney Sussex College, Cambridge to M.J.C.; EPSRC to C.P.G. and R.P.K. under Grant No. EP/K030132/1 EPSRC (EP/G004528/2) and ERC (Grant Ref: 279705) to M.J.C and A.L.G.. A.P.B. was supported by a Leverhulme Early Career Fellowship with joint funding from the Isaac Newton Trust. Via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by the EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://archer.ac.uk)

    Does a 'direct' transfer protocol reduce time to coronary angiography for patients with non-ST-elevation acute coronary syndromes? A prospective observational study.

    Get PDF
    OBJECTIVE: National guidelines recommend 'early' coronary angiography within 96 h of presentation for patients with non-ST elevation acute coronary syndromes (NSTE-ACS). Most patients with NSTE-ACS present to their district general hospital (DGH), and await transfer to the regional cardiac centre for angiography. This care model has inherent time delays, and delivery of timely angiography is problematic. The objective of this study was to assess a novel clinical care pathway for the management of NSTE-ACS, known locally as the Heart Attack Centre-Extension or HAC-X, designed to rapidly identify patients with NSTE-ACS while in DGH emergency departments (ED) and facilitate transfer to the regional interventional centre for 'early' coronary angiography. METHODS: This was an observational study of 702 patients divided into two groups; 391 patients treated before the instigation of the HAC-X pathway (Pre-HAC-X), and 311 patients treated via the novel pathway (Post-HAC-X). Our primary study end point was time from ED admission to coronary angiography. We also assessed the length of hospital stay. RESULTS: Median time from ED admission to coronary angiography was 7.2 (IQR 5.1-10.2) days pre-HAC-X compared to 1.0 (IQR 0.7-2.0) day post-HAC-X (p<0.001). Median length of hospital stay was 3.0 (IQR 2.0-6.0) days post-HAC-X v 9.0 (IQR 6.0-14.0) days pre-HAC-X (p<0.0005). This equates to a reduction of six hospital bed days per NSTE-ACS admission. CONCLUSIONS: The introduction of this novel care pathway was associated with significant reductions in time to angiography and in total hospital bed occupancy for patients with NSTE-ACS

    Low-dimensional quantum magnetism in Cu(NCS)2: A molecular framework material

    Get PDF
    Low-dimensional magnetic materials with spin-12\frac{1}{2} moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure and magnetic properties of copper(II) thiocyanate, Cu(NCS)2_2, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, 13^{13}C magic-angle spinning nuclear magnetic resonance (MASNMR) spectroscopy, and density functional theory (DFT) investigations indicate that Cu(NCS)2_2 behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains (J2=133(1)J_2 = 133(1) K, α=J1/J2=0.08\alpha = J_1/J_2 = 0.08). Powder neutron-diffraction measurements confirm that Cu(NCS)2_2 orders as a commensurate antiferromagnet below TN=12T_\mathrm{N} = 12 K, with a strongly reduced ordered moment (0.3 μB\mu_\mathrm{B}) due to quantum fluctuations

    Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework

    Get PDF
    We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf12_{12}O8_{8}(OH)14_{14}), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.M.J.C. was supported by Sidney Sussex College, Cambridge; M.J.C., J.A.H., and A.L.G. were supported by the European Research Council (279705); and J.L., A.C.F., E.C.-M., and C.P.G. were supported by the Engineering and Physical Sciences Research Council (U.K.) under the Supergen Consortium and Grant (EP/N001583/1). D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. The Diamond Light Source Ltd. (beamlines I11 (EE9940, EE15118), I12 (EE12554), and I15 (EE13681, EE13843) is thanked for providing beamtime. Via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). Part of this work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council

    Chemical diversity in a metal-organic framework revealed by fluorescence lifetime imaging

    Get PDF
    The presence and variation of chemical functionality and defects in crystalline materials, such as metal–organic frameworks (MOFs), have tremendous impact on their properties. Finding a means of identifying and characterizing this chemical diversity is an important ongoing challenge. This task is complicated by the characteristic problem of bulk measurements only giving a statistical average over an entire sample, leaving uncharacterized any diversity that might exist between crystallites or even within individual crystals. Here we show that by using fluorescence imaging and lifetime analysis, both the spatial arrangement of functionalities and the level of defects within a multivariable MOF crystal can be determined for the bulk as well as for the individual constituent crystals. We apply these methods to UiO-67, to study the incorporation of functional groups and their consequences on the structural features. We believe that the potential of the techniques presented here in uncovering chemical diversity in what is generally assumed to be homogeneous systems can provide a new level of understanding of materials properties

    The Retinoic Acid Receptor Agonist Am80 Increases Mucosal Inflammation in an IL-6 Dependent Manner During Trichuris muris Infection

    Get PDF
    PURPOSE: Vitamin A metabolites, such as all-trans-retinoic acid (RA) that act through the nuclear receptor; retinoic acid receptor (RAR), have been shown to polarise T cells towards Th2, and to be important in resistance to helminth infections. Co-incidentally, people harbouring intestinal parasites are often supplemented with vitamin A, as both vitamin A deficiency and parasite infections often occur in the same regions of the globe. However, the impact of vitamin A supplementation on gut inflammation caused by intestinal parasites is not yet completely understood. METHODS: Here, we use Trichuris muris, a helminth parasite that buries into the large intestine of mice causing mucosal inflammation, as a model of both human Trichuriasis and IBD, treat with an RARα/β agonist (Am80) and quantify the ensuing pathological changes in the gut. RESULTS: Critically, we show, for the first time, that rather than playing an anti-inflammatory role, Am80 actually exacerbates helminth-driven inflammation, demonstrated by an increased colonic crypt length and a significant CD4(+) T cell infiltrate. Further, we established that the Am80-driven crypt hyperplasia and CD4(+) T cell infiltrate were dependent on IL-6, as both were absent in Am80-treated IL-6 knock-out mice. CONCLUSIONS: This study presents novel data showing a pro-inflammatory role of RAR ligands in T. muris infection, and implies an undesirable effect for the administration of vitamin A during chronic helminth infection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10875-013-9936-8) contains supplementary material, which is available to authorized users

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Assessing the Role of CD103 in Immunity to an Intestinal Helminth Parasite

    Get PDF
    In the intestine, the integrin CD103 is expressed on a subset of T regulatory (T(reg)) cells and a population of dendritic cells (DCs) that produce retinoic acid and promote immune homeostasis. However, the role of CD103 during intestinal helminth infection has not been tested.We demonstrate that CD103 is dispensable for the development of protective immunity to the helminth parasite Trichuris muris. While we observed an increase in the frequency of CD103(+) DCs in the lamina propria (LP) following acute high-dose infection with Trichuris, lack of CD103 had no effect on the frequency of CD11c(+) DCs in the LP or mesenteric lymph nodes (mLN). CD103-deficient (CD103(-/-)) mice develop a slightly increased and earlier T cell response but resolve infection with similar kinetics to control mice. Similarly, low-dose chronic infection of CD103(-/-) mice with Trichuris resulted in no significant difference in immunity or parasite burden. Absence of CD103 also had no effect on the frequency of CD4(+)CD25(+)Foxp3(+) T(reg) cells in the mLN or LP.These results suggest that CD103 is dispensable for intestinal immunity during helminth infection. Furthermore, lack of CD103 had no effect on DC or T(reg) recruitment or retention within the large intestine

    Metal-organic framework glasses with permanent accessible porosity.

    Get PDF
    To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In contrast, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently and reversibly porous toward incoming gases, without post-synthetic treatment. We characterize the structure of these glasses using a range of experimental techniques, and demonstrate pores in the range of 4 - 8 Å. The discovery of MOF glasses with permanent accessible porosity reveals a new category of porous glass materials that are elevated beyond conventional inorganic and organic porous glasses by their diversity and tunability
    corecore