398 research outputs found

    A description of physical therapists' knowledge in managing musculoskeletal conditions

    Get PDF
    BACKGROUND: Physical therapists increasingly provide direct access services to patients with musculoskeletal conditions, and growing evidence supports the cost-effectiveness of this mode of healthcare delivery. However, further evidence is needed to determine if physical therapists have the requisite knowledge necessary to manage musculoskeletal conditions. Therefore, the purpose of this study was to describe physical therapists' knowledge in managing musculoskeletal conditions. METHODS: This study utilized a cross-sectional design in which 174 physical therapist students from randomly selected educational programs and 182 experienced physical therapists completed a standardized examination assessing knowledge in managing musculoskeletal conditions. This same examination has been previously been used to assess knowledge in musculoskeletal medicine among medical students, physician interns and residents, and across a variety of physician specialties. RESULTS: Experienced physical therapists had higher levels of knowledge in managing musculoskeletal conditions than medical students, physician interns and residents, and all physician specialists except for orthopaedists. Physical therapist students enrolled in doctoral degree educational programs achieved significantly higher scores than their peers enrolled in master's degree programs. Furthermore, experienced physical therapists who were board-certified in orthopaedic or sports physical therapy achieved significantly higher scores and passing rates than their non board-certified colleagues. CONCLUSION: The results of this study may have implications for health and public policy decisions regarding the suitability of utilizing physical therapists to provide direct access care for patients with musculoskeletal conditions

    Down-Regulation of HtrA1 Activates the Epithelial-Mesenchymal Transition and ATM DNA Damage Response Pathways

    Get PDF
    Expression of the serine protease HtrA1 is decreased or abrogated in a variety of human primary cancers, and higher levels of HtrA1 expression are directly related to better response to chemotherapeutics. However, the precise mechanisms leading to HtrA1 down regulation during malignant transformation are unclear. To investigate HtrA1 gene regulation in breast cancer, we characterized expression in primary breast tissues and seven human breast epithelial cell lines, including two non-tumorigenic cell lines. In human breast tissues, HtrA1 expression was prominent in normal ductal glands. In DCIS and in invasive cancers, HtrA1 expression was greatly reduced or lost entirely. HtrA1 staining was also reduced in all of the human breast cancer cell lines, compared with the normal tissue and non-tumorigenic cell line controls. Loss of HtrA1 gene expression was attributable primarily to epigenetic silencing mechanisms, with different mechanisms operative in the various cell lines. To mechanistically examine the functional consequences of HtrA1 loss, we stably reduced and/or overexpressed HtrA1 in the non-tumorigenic MCF10A cell line. Reduction of HtrA1 levels resulted in the epithelial-to-mesenchymal transition with acquisition of mesenchymal phenotypic characteristics, including increased growth rate, migration, and invasion, as well as expression of mesenchymal biomarkers. A concomitant decrease in expression of epithelial biomarkers and all microRNA 200 family members was also observed. Moreover, reduction of HtrA1 expression resulted in activation of the ATM and DNA damage response, whereas overexpression of HtrA1 prevented this activation. Collectively, these results suggest that HtrA1 may function as a tumor suppressor by controlling the epithelial-to-mesenchymal transition, and may function in chemotherapeutic responsiveness by mediating DNA damage response pathways

    Vacationers Happier, but Most not Happier After a Holiday

    Get PDF
    The aim of this study was to obtain a greater insight into the association between vacations and happiness. We examined whether vacationers differ in happiness, compared to those not going on holiday, and if a holiday trip boosts post-trip happiness. These questions were addressed in a pre-test/post-test design study among 1,530 Dutch individuals. 974 vacationers answered questions about their happiness before and after a holiday trip. Vacationers reported a higher degree of pre-trip happiness, compared to non-vacationers, possibly because they are anticipating their holiday. Only a very relaxed holiday trip boosts vacationers’ happiness further after return. Generally, there is no difference between vacationers’ and non-vacationers’ post-trip happiness. The findings are explained in the light of set-point theory, need theory and comparison theory

    Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s}=13 TeV

    Get PDF
    This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 \hbox {fb}^{-1} of pp collision data at \sqrt{s}=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z\rightarrow \mu \mu and J/\psi \rightarrow \mu \mu decays, and the minimisation of systematic uncertainties, allows the efficiencies of criteria for muon identification, primary vertex association, and isolation to be measured with an accuracy at the per-mille level in the bulk of the phase space, and up to the percent level in complex kinematic configurations. Excellent performance is achieved over a range of transverse momenta from 3 GeV to several hundred GeV, and across the full muon detector acceptance of |\eta |<2.7

    Measurement of the tt¯tt¯ production cross section in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain b-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26+17−15 fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24+7−6 fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0 ± 2.4 fb

    Search for bottom-squark pair production in pp collision events at √s=13 TeV with hadronically decaying τ-leptons, b-jets, and missing transverse momentum using the ATLAS detector

    Get PDF
    A search for pair production of bottom squarks in events with hadronically decaying τ -leptons, b -tagged jets, and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at √ s = 13     TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139     fb − 1 . The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino ˜ χ 0 2 and a bottom quark, with ˜ χ 0 2 decaying into a Higgs boson and the lightest neutralino ˜ χ 0 1 . The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying τ -leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the ˜ χ 0 2 , where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between ˜ χ 0 2 and ˜ χ 0 1 . Model-independent upper limits are also set on the cross section of processes beyond the Standard Model

    Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents

    Get PDF
    Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010–2012) and Run 2 (2015–2018) of the Large Hadron Collider. The extracted fluence shows a much stronger |z|-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.publishedVersio

    Measurements of Higgs bosons decaying to bottom quarks from vector boson fusion production with the ATLAS experiment at √=13TeV

    Get PDF
    The paper presents a measurement of the Standard Model Higgs Boson decaying to b-quark pairs in the vector boson fusion (VBF) production mode. A sample corresponding to 126 fb−1 of s√=13TeV proton–proton collision data, collected with the ATLAS experiment at the Large Hadron Collider, is analyzed utilizing an adversarial neural network for event classification. The signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model for VBF Higgs production, is measured to be 0.95+0.38−0.36 , corresponding to an observed (expected) significance of 2.6 (2.8) standard deviations from the background only hypothesis. The results are additionally combined with an analysis of Higgs bosons decaying to b-quarks, produced via VBF in association with a photon

    Measurements of W+W−+ ≥ 1 jet production cross-sections in pp collisions at s \sqrt{s} = 13 TeV with the ATLAS detector

    Get PDF
    Fiducial and differential cross-section measurements of W+W− production in association with at least one hadronic jet are presented. These measurements are sensitive to the properties of electroweak-boson self-interactions and provide a test of perturbative quantum chromodynamics and the electroweak theory. The analysis is performed using proton-proton collision data collected at p s = 13TeV with the ATLAS experiment, corresponding to an integrated luminosity of 139 fb−1. Events are selected with exactly one oppositely charged electron-muon pair and at least one hadronic jet with a transverse momentum of pT > 30 GeV and a pseudorapidity of |�| < 4.5. After subtracting the background contributions and correcting for detector effects, the jet-inclusive W+W−+ � 1 jet fiducial cross-section and W+W−+ jets differential cross-sections with respect to several kinematic variables are measured. These measurements include leptonic quantities, such as the lepton transverse momenta and the transverse mass of the W+W− system, as well as jet-related observables such as the leading jet transverse momentum and the jet multiplicity. Limits on anomalous triple-gauge-boson couplings are obtained in a phase space where interference between the Standard Model amplitude and the anomalous amplitude is enhanced

    Dijet Resonance Search with Weak Supervision Using root S=13 TeV pp Collisions in the ATLAS Detector

    Get PDF
    This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A → BC, for mA ∼ OðTeVÞ, mB; mC ∼ Oð100 GeVÞ and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 ffiffi s p ¼ 13 TeV pp collision dataset of 139 fb−1 recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with mA, mB, and mC. For example, when mA ¼ 3 TeV and mB ≳ 200 GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on mC. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model boson
    corecore