7 research outputs found

    Impact of SARS-CoV-2 Infection on Unvaccinated Pregnant Women: Non-Reassuring Fetal Heart Rate Tracing Because of Placentitis

    No full text
    In 2020, a new coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China. SARS-CoV-2 infection has been shown to be highly morbid in pregnant women, being a risk factor for several obstetric conditions leading to increased maternal and neonatal mortality. A few studies since 2020 have shown SARS-CoV-2 maternal–fetal transmission and noted placental abnormalities grouped under the term placentitis. We hypothesized that these placental lesions could be responsible for abnormalities in placental exchange and therefore abnormalities in cardiotocographic monitoring, leading to premature fetal extraction. The objective is to identify the clinical, biochemical, and histological determinants associated with the occurrence of non-reassuring fetal heart rate (NRFHR) outside labor in fetuses of SARS-CoV-2-infected mothers. We conducted a retrospective multicenter case series of the natural history of maternal SARS-CoV-2 infections resulting in fetal delivery outside labor due to NRFHR. Collaboration was sought with the maternity hospitals in the CEGORIF, the APHP and Brussels hospitals. The investigators were contacted by e-mail on three successive occasions over a period of one year. Data from 17 mothers and 17 fetuses were analyzed. Most women had a mild SARS-CoV-2 infection; only two women presented severe infection. No woman was vaccinated. We found a substantial proportion of maternal coagulopathy at birth: elevation of APTT ratio (62%), thrombocytopenia (41%) and liver cytolysis (58.3%). Iatrogenic prematurity was noted in 15 of 17 fetuses, and 100% were born by cesarean delivery due to emergency criteria. One male neonate died on the day of birth due to peripartum asphyxia. Three cases of maternal–fetal transmission were recorded following WHO criteria. Placental analysis in 15 cases revealed eight cases of SARS-CoV-2 placentitis, causing placental insufficiency. In total, 100% of the placentas analyzed showed at least one lesion suggestive of placentitis. SARS-CoV-2 maternal infection during pregnancy is likely to generate neonatal morbidity in relation to placental damage resulting in placental insufficiency. This morbidity may be the consequence of induced prematurity as well as acidosis in the most severe situations. Placental damage occurred in unvaccinated women and in women with no identified risk factor, in contrast to severe maternal clinical forms.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Detecting conservation benefits of marine reserves on remote reefs of the northern GBR

    Get PDF
    The Great Barrier Reef Marine Park (GBRMP) is the largest network of marine reserves in the world, yet little is known of the efficacy of no-fishing zones in the relatively lightly-exploited remote parts of the system (i.e., northern regions). Here, we find that the detection of reserve effects is challenging and that heterogeneity in benthic habitat composition, specifically branching coral cover, is one of the strongest driving forces of fish assemblages. As expected, the biomass of targeted fish species was generally greater (up to 5-fold) in no-take zones than in fished zones, but we found no differences between the two forms of no-take zone: ‘no-take’ versus ‘no-entry’. Strong effects of zoning were detected in the remote Far-North inshore reefs and more central outer reefs, but surprisingly fishing effects were absent in the less remote southern locations. Moreover, the biomass of highly targeted species was nearly 2-fold greater in fished areas of the Far-North than in any reserve (no-take or no-entry) further south. Despite high spatial variability in fish biomass, our results suggest that fishing pressure is greater in southern areas and that poaching within reserves may be common. Our results also suggest that fishers ‘fish the line’ as stock sizes in exploited areas decreased near larger no-take zones. Interestingly, an analysis of zoning effects on small, non-targeted fishes appeared to suggest a top-down effect from mesopredators, but was instead explained by variability in benthic composition. Thus, we demonstrate the importance of including appropriate covariates when testing for evidence of trophic cascades and reserve successes or failures

    Ecological approaches to coastal risk mitigation

    No full text
    Natural coastal habitats play an important role in protecting coastal areas from sea water flooding caused by storm surge events. Many of these habitats, however, have been lost completely or degraded, reducing their ability to function as a natural flood defense. Once degraded, natural habitats can potently be destroyed by storm events, further threatening these systems. Much of the loss of coastal habitats is caused by increased human activity in coastal areas and through land claimed for urban, industrial, or agricultural use. As a result, some coastal habitats have become rare and threatened across much of Europe and the world. An associated problem is that of sea level rise, which has the combined impact of both increasing the risk of flooding in coastal ecosystems and increasing the severity of storm surge events. This chapter addresses two key topics: (1) the use of natural habitats as a form of coastal defense focusing on the required management and how to restore and/or create them and (2) ecological considerations in the design of hard coastal defense structures. The habitats that play a role in coastal deface and considered here are: (1) saltmarshes, (2) sand dunes, (3) seagrass meadows, and (4) biogenic reefs, including Sabellaria reefs, oyster beds, and mussel beds. As part of coastal habitat restoration and management, the process of saltmarsh creation, either through seaward extension or managed realignment is discussed focusing on potential benefits. Finally, key cumulative stressors that can hinder ecological approaches to coastal risk mitigation are reviewe

    CoCoNet: Towards coast to coast networks of marine protected areas (From the shore to the high and deep sea), coupled with sea-based wind energy potential

    No full text
    This volume contains the main results of the EC FP7 "The Ocean of Tomorrow" Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community

    CoCoNet: towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential

    Get PDF
    This volume contains the main results of the EC FP7 “The Ocean of Tomorrow” Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community

    Editorial. A supplement of Scires-it on the COCONET european project

    Get PDF
    The Supplement to vol. 6, 2016 of SCIRES-IT contains the result of CoCoNet (Towards COast to COast NETworks of marine protected areas, coupled with sea-based wind energy potential), a project of the EU Oceans of Tomorrow programme (http://www.coconet-fp7.eu). The European Union requires Open Access to the results of the projects resulting from its support to scientific advancement. This is in full accordance with the policy of SCIRES-IT, an eco-sustainable open–access journal, which joins the main principles of the Berlin Declaration on Open Access with the aims of the International Convention on Biological Diversity. CoCoNet tackled two problems that are closely linked with each other: the protection of the marine environment and clean energy production. Hence, the Supplement is divided into two parts that, together, form a unicum

    CoCoNet: Towards coast to coast networks of marine protected areas (From the shore to the high and deep sea), coupled with sea-based wind energy potential

    No full text
    This volume contains the main results of the EC FP7 "The Ocean of Tomorrow" Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community
    corecore