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Abstract

The Great Barrier Reef Marine Park (GBRMP) is the largest network of marine reserves

in the world, yet little is known of the efficacy of no-fishing zones in the relatively lightly-

exploited remote parts of the system (i.e., northern regions). Here, we find that the detection

of reserve effects is challenging and that heterogeneity in benthic habitat composition, spe-

cifically branching coral cover, is one of the strongest driving forces of fish assemblages. As

expected, the biomass of targeted fish species was generally greater (up to 5-fold) in no-

take zones than in fished zones, but we found no differences between the two forms of no-

take zone: ‘no-take’ versus ‘no-entry’. Strong effects of zoning were detected in the remote

Far-North inshore reefs and more central outer reefs, but surprisingly fishing effects were

absent in the less remote southern locations. Moreover, the biomass of highly targeted spe-

cies was nearly 2-fold greater in fished areas of the Far-North than in any reserve (no-take

or no-entry) further south. Despite high spatial variability in fish biomass, our results suggest

that fishing pressure is greater in southern areas and that poaching within reserves may be

common. Our results also suggest that fishers ‘fish the line’ as stock sizes in exploited areas

decreased near larger no-take zones. Interestingly, an analysis of zoning effects on small,

non-targeted fishes appeared to suggest a top-down effect from mesopredators, but was

instead explained by variability in benthic composition. Thus, we demonstrate the impor-

tance of including appropriate covariates when testing for evidence of trophic cascades and

reserve successes or failures.
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Introduction

Fishing on coral reefs has taken place for millennia, but ecological impacts have increased with

a global intensification of fish stock exploitation [1, 2] and habitat degradation [3–5]. To coun-

teract ecosystem impacts of fishing on reefs, no-take marine reserves have been widely imple-

mented as a management strategy for preventing overfishing, by facilitating the recovery of

fish stocks and conserving biodiversity [6–9]. However, the benefits of marine reserves for

fisheries and the ecological impacts of marine reserves on restoring fish populations on nearby

coral reefs and for benefiting fisheries remains controversial (e.g. [10–14]).

Detecting the primary benefits of no-take marine reserves, such as the protection and resto-

ration of overfished species, requires appropriate context due to the numerous factors influ-

encing the magnitude and direction of effects [15–18]. For example, while no-take marine

reserves can allow the recovery in density, size and biomass of targeted species in both tropical

and temperate systems [8, 9, 19–22], positive effects on fish density can also be influenced by

the size and age of marine reserves [17, 23–25]. In addition, recovery rates differ among species

with different life-history characteristics and fishing vulnerability [26, 27], and among size-

classes within fish families [8]. For example in Kenya, overall parrotfish density recovered

within 10 years of protection whereas acanthurids took more than 30 years [8]. In contrast,

dramatic increases in the density of the coral trout (Plectropomus spp., Serranidae) were

observed only two years after the implementation of no-take reserves on the Great Barrier Reef

(GBR; [28]).

The positive impacts of marine reserves on fish populations can potentially be confounded

by habitat differences because of the high dependence of reef fish on habitat structure [29–32].

Yet patterns of habitat structure might reflect the impact of exogenous drivers unassociated

with reserves and may serve to distort putative reserve benefits. While marine reserves can

mitigate habitat damage associated with destructive fishing practices (e.g. dynamite and trawl

fishing), they offer little or no protection from anthropogenic stressors such as pollution or

nutrients, and climate-driven disturbances such as coral bleaching and cyclones [33–35]. Con-

sequently, differences in habitat quality among reefs may obscure the impact of protection

from fishing on fish biomass. Similarly, while the establishment of marine reserves can also

affect top-down interactions between predators and prey (e.g. [36–41], but see [42]), the

impact of marine reserves in restoring trophic interactions can be difficult to detect if habitat

quality varies across reserve boundaries (e.g. [31, 43]). However, relatively few studies assess-

ing the performance of marine reserves have accounted for the effect of habitat on the spatial

variability of fish species [19, 41, 44–48].

A typical metric of reserve effectiveness is the contrast in fish biomass between the reserve

and comparable fished areas [18]. However, the magnitude of this difference is highly sen-

sitive to the intensity of fishing, and small effect sizes might be expected in relatively lightly-

exploited systems. Relatively few reserve studies examine healthy environments, perhaps

because of their general scarcity, but the far-northern regions of Australia’s Great Barrier Reef

Park (GBRMP) are a prime example of lightly-exploited reefs. The GBRMP, declared in 1975,

comprises the world’s largest system of coral reefs stretching 2,300 km along Australia’s north-

eastern coastline and extending up to 300 km offshore [49]. The GBRMP is managed by the

Great Barrier Reef Marine Park Authority (GBRMPA) through a spatial zoning plan, each

zone providing for increasing levels of protection and various types of resource use [49]. While

some parts of the GBRMP are open to both commercial and recreational fisheries (‘Blue’

zones), some areas are set aside as ‘Green’ zones that are putatively free from fishing and col-

lecting but allow boating, snorkeling and diving activities (no-take zones). Other no-take areas

are also inaccessible for any human activity (‘Pink’ or ‘no-entry’ zones) [49]. Both recreational
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and commercial fisheries on the GBR are fairly species-specific, focusing primarily on higher

trophic levels (i.e. piscivorous reef fishes) using hook and line, which has little direct impact on

habitat structure [50]. While fishing intensity on coral reef areas within the GBRMP is rela-

tively low at a regional scale, the commercial fishery has undergone notable increases in effort

(by 40%) and catch (by 50%) since 1995 [51]. However, conservation management strategies

for a better representation of biodiversity within no-take areas resulted in the modification of

the zoning plan in 2004 increasing the reef area closed to line fishing from less than 5% to

nearly 34% [51]. In the northernmost section of the GBR (the Far-Northern section) situated

east of the Cape York Peninsula, the zoning plan, which has been in operation since 1986,

allows for commercial and recreational fishing activities in nearly 84% of the area (i.e. Blue

zone), while 13% of the area is a no-take Green zone and less than 1% is a no-entry Pink zone

[49].

Recreational fishing in the Far-Northern Section of the GBR is mainly seasonal (from April

to October) and is naturally limited spatially and in intensity because of the remoteness of the

area and the low resident population. As a result, most of the recreational fishing effort applies

to the nearshore reefs, while the commercial line fishery is currently expanding as operators

move away from the more heavily used areas [52]. While coral trout (followed by snappers and

the redthroat emperor) represent the most intensively harvested group by recreational fishers

in the areas of Cairns and Townsville, the catch of snappers exceeds that of coral trout by

almost two-fold further north in the Cooktown area [53]. Limited data are available further

north of Cooktown and because of the remoteness and large extent of the Far-Northern Sec-

tion; enforcement and surveillance presence are also limited [52].

To the best of our knowledge, little is known about the performance of management zoning

on the northernmost section of the GBR. However, recent studies have shown that the density,

size and biomass of coral trout increase in no-entry and no-take zones of the Cairns/Cooktown

Section to Townsville [9, 42], which is located immediately south of the Far-Northern Section

of the GBR. Interestingly, the densities of sharks and some other targeted species appear to be

as great in no-entry zones than no-take zones, which has been attributed to illegal fishing in

no-take zones [21, 54, 55]. Another possible mechanism for the higher abundance of some

fishes in no-entry zones is the reduction of negative effects associated with shipping noise. For

example, recent studies have found that noise-generating human activities reduce the ability of

fish to detect predators [56].

Because reefs in the far-north are generally less exposed to cyclones, crown-of-thorns star-

fish (COTS) outbreaks, and eutrophication compared to the rest of the GBR [33, 34, 57], this

section of the GBR provides an opportunity to assess the direct effects of management (i.e. pro-

tection from fishing) on the exploited fish stocks in relatively undisturbed benthic habitats. It

also offers the opportunity to assess abundances in the face of limited exploitation compared

with the rest of the GBR. This study evaluates the impact of management zoning on the coral

reef fish assemblages of the northernmost GBR (i.e. Far-North Section and north portion of

the Cairns/Cooktown Section). Specifically, we assess the effect of a gradient of protection

from fishing (no-entry, no-take, and fished zones) on fish assemblages following a latitudinal

gradient and account for reef location on the continental shelf (inshore, mid-shelf and outer

reefs), as well as for the impact of habitat effects via the benthos. Because we expect lower fish-

ing intensity in more remote areas, we hypothesize that there is a weaker effect of zoning on

the biomass of targeted fish species in outer reefs compared to inshore reefs. We also anticipate

a stronger effect of zoning in the central and southern sectors compared to northern reefs due

to a presumed higher fishing pressure closer to more populated areas (i.e. near to Cooktown).

Because fishing pressure in the northernmost GBR is confined to a few highly-targeted species,

we also sought evidence of trophic cascades to non-targeted prey species and the benthos.
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Finally, we performed an exploratory analysis regarding the spatial distribution of fishing

effects; specifically, is there evidence that fishers are ‘fishing the line’ and preferentially target-

ing areas near reserve boundaries [58]?

Material and methods

Ethics statement

All research was completed under research permit G14/36867.1 issued on 15 August 2014. The

use and entry into zones in the Amalgamated Great Barrier Reef Marine Park Section and the

Great Barrier Reef Coast Marine Park were identified and authorized under permit G14/

372021 issued on 28 August, 2014 by the GBRMPA.

Surveyed area and reef sites

The benthic cover and reef fish assemblage of 31 reefs located along 500 km of the north-

ernmost GBR was assessed by The Khaled bin Sultan Living Oceans Foundation during Sep-

tember 2014 (Fig 1). Surveyed reefs spanned up to 140 km across the continental shelf (inner-,

mid- and outer shelf) and each represented one of three management zones officially desig-

nated by the GBRMPA: 1) Habitat Protection or Blue Zone which are open to both commer-

cial and recreational fisheries (i.e. fished areas); 2) Marine National Park or Green Zone which

allow activities such as diving and boating but prohibit fishing (i.e. no-take areas); and 3) Pres-

ervation or Pink Zone which are inaccessible for any human activity (i.e. no-entry areas). All

three management zones were surveyed at each shelf position, but not all shelf positions were

surveyed along the latitudinal gradient due to logistical constrains (Table 1). Reefs were classi-

fied into three sections (sub-regions), hereafter referred as: north (11˚01’-11˚59’S), central (13˚

21’-13˚34’S) and south (14˚21’ - 15˚27’S). The majority of the surveyed marine reserves (either

no-take or no-entry zones) had been implemented for nearly 30 years except for three reefs

which were established as no-take zones in 2004 [49]. On each reef, between two and six sites

were randomly surveyed, providing a total of 165 sites (Table 1). Therefore, each reef assess-

ment encompassed multiple habitat types (i.e. forereef, back reef and lagoon areas). The expo-

sure of each site was categorized in situ as windward or leeward. Surveys were conducted at a

mean depth of 10.0 m ± 0.1 SE per site with transects ranging between 6–15 m depth.

Benthic cover assessment

Benthic cover was assessed using a point intercept method. The substrate type found every 10

cm along a 10 m transect (i.e. total 100 points/transect) was recorded. Substrate types included:

a) live coral; b) algae identified as turfs, sediment-laden turfs, crustose coralline algae (CCA),

erect coralline algae or fleshy macroalgae; c) other sessile invertebrates; and d) non-colonisable

substrate (e.g. sand). Live coral was identified to genus and main growth form (i.e. branching,

tabular Acropora, plate (non-Acropora), massive, sub-massive, encrusting, foliose or phace-

loid). For analyses, all corals were pooled per growth form except tabular Acropora which was

treated separately due to its dominance and distinctive morphology. In addition, a 10m-long

photo transect was conducted at 61 sites (which encompassed 28 reefs) using a 1 m x 1 m

quadrat to estimate benthic cover using the Coral Point Count (CPCe) software [59]. A total of

50 points were randomly placed on each quadrat image and the substrate type directly under-

neath each point was recorded with the same benthic categories as previously described. Due

to low replication of the benthic surveys at the level of a site, benthic covers estimated from

point intercept and photo transects were treated as replicates after prior analyses revealed no

significant effect of the survey method on cover estimates (646 transects in total). Despite this

Marine reserves on remote coral reefs

PLOS ONE | https://doi.org/10.1371/journal.pone.0186146 November 8, 2017 4 / 24

https://doi.org/10.1371/journal.pone.0186146


pooling, 40 sites out of 165, had only one sample. Consequently, the effect of benthic structure

on fish was analysed at the level of a reef. At this level, one reef (southern outer shelf) was

Fig 1. Location of reefs sites surveyed on the northernmost section of the GBR. The legend on the top

left indicates the color code to reference each reef by shelf location and management status. Sources:

GBRMPA datasets: Great Barrier Reef Features (Version 1.2), Special Management Areas (v1.0), Marine

Bioregions of the Great Barrier Reef (Reef) (v2.0). Retrieved from http://www.gbrmpa.gov.au/geoportal. Map

created using ArcGIS® software by Esri.

https://doi.org/10.1371/journal.pone.0186146.g001

Table 1. Characterization of surveyed reef sites.

GBR Management Sections and sub-regions

Far-North Cooktown

Shelf position Management zones north central south

fished 1 (2L-4W)

Inner lagoon no-take 2 (7L-5W)

no-entry 2 (7L-5W)

fished 1 (5L-1W) 1 (3L-3W)

Mid-shelf no-take 1 (2L-4W) 2 (5L-4W)

no-entry 1 (2L-4W) 1 (2L-4W)

fished 3 (7L-5W) 1 (4L-2W) 4 (4L-14W)

Outer no-take 2 (6L-4W) 1 (5L-1W) 2 (7L-5W)

no-entry 2 (5L-4W) 1 (3L-3W) 3 (11L-7W)

Spatial location and management status (fished, no-take and no-entry) of surveyed reefs in the northernmost GBR (Far-Northern and Cooktown Sections)

across shelf position (inner lagoon, mid-shelf and outer) and sub-regions from north to south. Numbers indicate reefs. Brackets show the number of sites

located in leeward (L) and windward (W) sides.

https://doi.org/10.1371/journal.pone.0186146.t001
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sampled with two (LIT) transects only but all the other reefs had a minimum of seven benthic

replicates (S1 Table).

Fish surveys

Fish counts were conducted using 30 m x 4 m transects. Each transect was conducted by one

diver counting fish on both sides of the transect line (within 2 m on each side). A total of four

divers performed the surveys throughout the study. On each reef, each replicate site was visited

by at least one diver (usually two divers per site). All divers surveyed all habitat types (wind-

ward and leeward sites), but not all divers surveyed both fished reefs and reserves within sub-

regions due to logistical constraints regarding weather conditions. Therefore, replicate tran-

sects ranged between 2–9 per site (712 transects in total). Fish size was estimated to the nearest

centimeter using a T square marked in 5 cm increments. Biomass estimates of each species

were calculated using published length-weight relationships [60]. A total of 575 species were

identified and assigned to a single trophic category: carnivores (i.e. piscivore, piscivore-inverti-

vore, macroinvertivore, microinvertivore), herbivores, planktivores, corallivores, omnivores

and others. Carnivores were further categorized as “highly targeted”, “less targeted”, “pro-

tected” or “not fished” based on the annual status report of Queensland commercial fisheries

[61]. Highly targeted species that dominate the commercial line (and recreational) fisheries

include the coral trout of the genus Plectropomus (P. areolatus, P. leopardus, P. laevis, P.macu-
latus, P. oligocanthus) and Variola (V. albimarginata and V. louti) (hereafter referred as coral

trout), emperors (Lethrinus miniatus, L. nebulosus, L. erythropterus), and snappers (Lutjanus
adetti, L. carponotatus, L. russelli, L. sebae, and L. vitta). See S2 Table for complete list of carni-

vores based on importance to fisheries.

Geographic variables

The location of reefs sites was mapped in ArcGIS 10.4.1 using the reef site coordinates and

datasets downloaded from GBRMPA (Fig 1). Geographic attributes such as latitude and dis-

tance (km) of reefs to shoreline and distance to the nearest port were estimated to reflect

remoteness or accessibility to fishing. Further, the distance (km) to the nearest reserve (either

no-take or no-entry) was calculated for each reef where fishing is permitted in order to exam-

ine potential ‘fishing the line’ effects whereby fishers preferentially exploit the borders of pro-

tected areas. Geographic distances were calculated using the “XY to Line” feature tool and the

“Calculate Geometry” equation in ArcGIS 10.4.1. The size of each reef (area in km2) was esti-

mated by tracing the reef shoal perimeter using the ‘Measure’ tool in ArcGIS 10.4.1.

Data analysis

Owing to the large scale of our experimental design, we first explored the effects of manage-

ment zoning on the benthic community structure, and the fish assemblage structure with

respect to latitude (sub-region), shelf position and wave exposure. A Permutational Analysis of

Variance (PERMANOVA) based on the Bray-Curtis similarity matrix [62] was performed for

the matrix of benthic cover, exploited fish biomass (highly targeted and less targeted species)

and non-exploited fish biomass separately. Benthic data were square root transformed and fish

biomass was log+1 transformed. Management status (i.e., fished, no-take and no-entry zones),

shelf position (i.e., inner, mid-shelf and outer reef), sub-region (north, central and south) and

wave exposure (windward and leeward) were included as fixed effects with interactive terms.

Sites were included nested within reefs as random effects. We ran PERMANOVA using sums

of squares (SS) Type III to account for the unbalanced design [62]. When significant interac-

tions were detected, the interaction term was investigated through a posteriori pair-wise
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comparisons PERMANOVA with adjusted p-values using the Benjamini & Hochberg (BH)

procedure. Non-significant terms were removed from the final model. An additional analysis

using Similarity Percentage (SIMPER) [63] was performed to determine the benthic categories

that contributed the most to the dissimilarity in benthic community structure between fished

reefs and reserves. All analyses were performed with the software PRIMER.

Spatial similarity in benthic community and fish assemblage structures among sites was visu-

alized using Principal Coordinates Analysis (PCO) based on the Bray-Curtis similarity matrix

[62]. Here, we used site-averaged data in order to correlate benthic and fish variables. Association

strength between each PCO axis and vectors of benthic categories and fish species biomass was

measured with the Spearman correlation coefficient and visualized by overlaying the vectors onto

the PCO plot. The length and angle of the vector shows the strength and type of the association

(either positive or negative) with PCO axes [62]. Here, we considered correlations>0.5 to indi-

cate the most influential variables in determining the spatial patterns of similarity among sites.

Initial multivariate analyses revealed 1) strong geographic effects on benthic community and

fish assemblages structure; 2) geographic differences in biomass composition between highly

targeted and less targeted species; and 3) no significant differences between no-take and no-

entry status on the assemblage structure of targeted mesopredators. Therefore, we refined spe-

cific geographic locations as combinations of shelf position and sub-regions, and pooled data

for the two types of reserves to test separately the effect of zoning (i.e. fished reefs vs reserves)

on the total biomass of 1) highly targeted; 2) less targeted; and 3) non-targeted fish using univar-

iate analyses (S3 Table). To allow for adequate replication within each designed geographic loca-

tion, we grouped reefs as follows: 1) Inshore north reefs (i.e. inner shelf reefs plus one mid-shelf

reef); 2) all other mid-shelf reefs (from north to south); 3) outer north reefs; 4) outer central

reefs; and 5) outer southern reefs. To account for the concurrent effect of habitat structure on

fish biomass we defined new habitat variables using the scores of the surveyed sites along the

first two axes of the PCO on benthic community structure. These two new variables are com-

posite descriptors of habitat heterogeneity as they retain most of the variability in benthic cover

among sites with the desirable property of being independent (i.e., orthogonal) to each other.

Site-averaged biomasses of highly targeted mesopredators, less targeted mesopredators, and

non-targeted species, were investigated separately with linear mixed models (LMM) using the

R package lme4. Data were log+1 transformed for analyses. Management zones, habitat hetero-

geneity (defined by the two PCO axes on benthic community structure) and wave exposure

were treated as fixed effects, whereas reef, observer, and depth were treated as random effects.

Conformity to model assumptions was evaluated by controlling the dispersion and normality

of model residuals. We performed a variance components analysis to determine the percentage

variance of random effects (i.e. how much variation in biomass is explained by the random

effects), and a Restricted Likelihood Ratio Test with the exactRLRT function from the RLRSim
package to test the significance of the random effects in each LMM [64].

Finally, we used linear regression models to test whether the biomass of highly targeted spe-

cies in fished areas was depleted with greater proximity to reserves (i.e. potential fishing the

line). We also included reserve size as a factor in case this mitigated or exacerbated a pattern of

fishing adjacent to protected areas. Fish biomass was squared root-transformed in order to

meet the assumptions of linear regression analyses.

Results

Benthic community structure

Benthic community structure was strongly associated with position across the continental

shelf. The first two PCOs explained nearly 56% of variance and generated two groups of reef
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sites: (1) inner and mid-shelf reefs vs (2) outer-shelf reefs (Fig 2A). Wave exposure explained

little (<1.5%) of the total observed variability and affected only no-take reserves (S4 Table).

Those benthic cover vectors with the strongest correlation to the PCO revealed that high cover

of branching corals (mainly Acropora and Pocillopora; S5 Table), tabular Acropora corals and

CCAs were indicative of outer-shelf reefs as opposed to inner and mid-shelf reefs. Conversely,

‘sediment-laden turfs’ and massive corals were strongly associated with inner and mid-shelf

reefs but poorly represented on outer-shelf reefs (Fig 2B). While shelf position was the main

predictor of benthic habitat composition, overall, northern reefs had greater total coral cover

(44.5 ± 2.2% vs 31.3 ± 2.7%) and lower algal cover than reefs in the south (23.0 ± 1.7% vs

34.3 ± 3.6%). Therefore, significant interactions were detected with sub-region and manage-

ment zones (PERMANOVA, Table 2). Significant differences between reserves (i.e. no-take vs

no-entry) were only found on northern mid-shelf reefs and outer-central reefs (S6 Table). A

SIMPER analysis showed that these differences were mainly due to the greater cover of massive

corals and CCA in no-entry zones compared to no-take zones (Fig 3). Interactive effects with

sub-regions were partly due to branching corals in outer reefs, which achieved higher cover in

northern (17.0 ± 1.3%) than southern (10.7 ± 1.1%) areas. Within the northern outer-shelf

reefs, the cover of branching corals was higher on fished sites (23.5 ± 3%) compared to

Fig 2. Principle Coordinate Analysis (PCO) of benthic cover. Ordination plots show (a) reef sites along

the first two axes based on shelf position, (b) overlay of vectors based on Spearman correlations. Strongest

correlations (> 0.5) shown in red. Cover data were square-root transformed for analyses.

https://doi.org/10.1371/journal.pone.0186146.g002
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protected sites (no-take 12.2 ± 2%; no-entry 13.7 ± 2%). Other noticeable differences among

management zones were on northern inner reefs, where the cover of algal turf was greater in

fished sites (15.5 ± 6.5%) than reserves (no-take 5.3 ± 1%; no-entry 5.5 ± 1%) (Fig 3).

Multivariate composition of targeted species

The biomass composition of all targeted species (i.e. highly and moderately targeted) mirrored

the geographic pattern of benthic structure. Fish assemblages were strongly associated with

shelf position (Fig 4A and Table 2). In all cases where multiple shelf locations were sampled

(i.e., in the north and south), outer-shelf reefs formed a single independent cluster (Fig 4A and

4C). Mid-shelf reefs, which were only sampled in the north and south, exhibited a more com-

plex pattern reflecting distance from shore. The designation of a reef’s shelf position is a rela-

tive measure and some northern mid-shelf reefs were geographically closer to inner-shelf reefs

than others. As a consequence, those northern mid-shelf reefs that were geographically closer

to inner-shelf reefs (<50 km from shore) clustered with inner reefs on the PCO (Fig 4C).

Those northern mid-shelf reefs lying farther offshore (typically >90 km from shore) clustered

as a single mid-shelf group that also encompassed southern mid-shelf reefs (Fig 3A and 3C).

Discrimination of reef sites due to habitat type did not occur (S1 Fig).

Disaggregating fish among highly and less targeted helped characterise the compositional

differences in fish community among outer reefs, mid-shelf, and northern mid/inner shelfs

(hereafter inshore reefs; Fig 4B). Inshore reefs were characterised by having the greatest bio-

mass of the highly targeted lutjanids (L. carponotatus and L. vitta) and the lethrinid L. nebulo-
sus. This cluster was also characterised by the less-targeted Cephalopholis spp. (serranids) and

Choerodon spp. (labrids). The biomass of the highly targeted common coral trout (P. leopar-
dus) was highest on mid-shelf reefs, while the lethrinid Monotaxis grandoculis was most

Table 2. PERMANOVA results on benthic community and fish biomass structure.

Response variable Source df MS Pseudo-F p-value % Estimates of Variation

Benthic cover Shelf position 2 37187 31.8 <0.001 14.3

% cover (sqrt) Sub-region 2 9236.3 7.9 <0.001 3.7

Zone*Shelf 4 3697.6 3.2 <0.001 3

Zone*Sub-region 4 3675.6 3.1 <0.001 3.4

Residual 624 1169.4 70.4

Total 645

Fished species Shelf position 2 118000 24.1 <0.001 16.89

Biomass (log+1) Sub-region 2 18142 3.8 <0.001 2.35

Wave Exposure (WE) 1 10289 2.2 0.01 5.8

Zone*Sub-region 4 8997 1.9 <0.001 2.1

Zone*WE 2 7538 1.6 0.04 8.4

Sites(Reef) 134 5017.7 1.7 <0.001 9.4

Residual 553 2170.2 53.6

Total 704

Non-fished species Shelf position 2 145000 26.3 <0.001 21.8

Biomass (log+1) Sub-region 2 21401 4.1 <0.001 2.7

Sites(Reef) 134 5537.7 2.5 <0.001 18.6

Residual 556 2229.7 53.9

Total 704

Only significant factors explaining more than 2% of total variability are shown.

https://doi.org/10.1371/journal.pone.0186146.t002
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commonly found on outer-shelf reefs and characterised these environments (Fig 4B). The

large P. laeviswas indicative of outer reefs, overlapping with mid-shelf reefs.

Fig 3. Benthic components that made the greatest contribution to dissimilarity among zones. Mean %

cover (± SE) of the benthic components identified by SIMPER analyses as major contributors to the

dissimilarity in benthic community structure among zones (fished = blue, no-take = green, no-entry = pink) in

each sub-region (a-f). Significant differences between reserves (i.e. no-take vs no-entry) were only found in

northern mid-shelf reefs and outer-central reefs. Sedim/turf = sediment-laden turfs.

https://doi.org/10.1371/journal.pone.0186146.g003

Fig 4. Principle Coordinate Analysis (PCO) of the assemblage structure of targeted carnivores. (a)

ordination of reef sites along the first axes (PCO1, PCO2) following shelf position, (b) species of highly

targeted (red) and less-targeted (blue) carnivores that show the strongest correlation (Spearman >0.5) to

PCO, (c) ordination following sub-regions. Dotted circle denotes inshore reefs (<50 km from shore) and (d)

management zones. Biomass was log+1 transformed for analyses.

https://doi.org/10.1371/journal.pone.0186146.g004

Marine reserves on remote coral reefs

PLOS ONE | https://doi.org/10.1371/journal.pone.0186146 November 8, 2017 10 / 24

https://doi.org/10.1371/journal.pone.0186146.g003
https://doi.org/10.1371/journal.pone.0186146.g004
https://doi.org/10.1371/journal.pone.0186146


Simple partitioning of fish composition by management zones did not occur (Fig 4D). In

fact, the effect of management zones varied with shelf position, sub-regions and wave exposure

(Table 2, and S6 Table). These patterns are explored in more detail using univariate analyses

per fished category (highly targeted and less-targeted).

Management zoning effects on highly targeted fish (univariate analyses)

The biomass of targeted fish was indistinguishable between the two no-take reserve categories

(no entry vs no-take) (S6 Table) so they were pooled for comparisons with fished reefs. In

inshore reefs, zoning effects were evident in some highly-targeted species, even after accounting

for habitat heterogeneity (Table 3 and Fig 5A). Specifically, the biomass of the carnivores L. neb-
ulosus (85.2 ± 32.7 g 120 m2) and L. vitta (3.4 ± 2.7 g 120 m2) was reduced by more than 60% in

fished reefs compared to reserves (337.9 ± 80.0 g 120 m2 for L. nebulosus vs 89.9 ± 29.6g 120 m2

for L. vitta) but no differences were detected for the biomass of coral trout (718.3 ± 167.2 g

120 m2 in fished reefs vs 716.4 ± 124.8 g 120 m2 reserves). No differences in benthic composi-

tion were evident between fished reefs and reserves in inshore reefs and exposure did not affect

fish biomass. Therefore, habitat did not explain changes in fish biomass among zones corrobo-

rating that differences were attributed to zoning only.

In mid-shelf reefs, an apparent two-fold increase in the biomass of highly-targeted species

within reserves (Fig 5A) was not attributable to zoning (Table 3). Similar results were obtained

when analyzing coral trout separately. The apparent increase in coral trout biomass from

228.2 ± 94.9 g 120 m2 in mid-shelf fished reefs to 1274.0 ± 253.9 g 120 m2 in reserves (a 5-fold

Table 3. Summary of linear mixed models testing zoning and habitat effects on fish biomass.

Location Variable Effect Estimate SE df t p-value

Inner–north Highly targeted (Intercept) 7.17 0.25 28.00 28.72 <0.0001

(log+1) Reserve 0.85 0.29 28.00 2.95 0.01

Less targeted (Intercept) 7.26 0.61 5.91 11.93 0.00

(log+1) Reserve*Windward 1.09 0.58 24.57 1.87 0.07

Non-targeted (Intercept) 6.39 0.34 4.28 18.82 <0.0001

(log+1) Benthos_PCO2 0.01 0.01 22.49 2.36 0.03

MidShelf Highly targeted (Intercept) 6.38 0.76 18.54 8.42 <0.0001

north-south (log+1) Benthos_PCO2 -0.05 0.03 25.58 -1.95 0.06

Less targeted (Intercept) 4.61 0.76 9.03 6.06 <0.0001

(log+1) Benthos_PCO1 0.03 0.01 24.04 2.01 0.06

Non-targeted (Intercept) 6.26 0.55 3.75 11.43 <0.001

(log+1) Benthos_PCO1 -0.02 0.01 21.62 -3.32 0.003

Benthos_PCO2 0.02 0.01 18.87 3.40 0.003

Outer–north Highly targeted (Intercept) 4.65 1.65 3.42 2.81 0.06

(log+1) Benthos_PCO1 -0.05 0.03 23.22 -1.95 0.06

Non-targeted (Intercept) 7.06 0.20 7.78 34.55 <0.0001

(log+1) Benthos_PCO1 0.01 0.01 24.87 1.73 0.10

Outer–central Less targeted (Intercept) 6.36 0.49 9.10 13.03 <0.0001

(log+1) Reserve 1.60 0.64 12.99 2.51 0.03

Windward -1.26 0.67 12.36 -1.88 0.08

Outer south Highly targeted (Intercept) 7.03 1.16 7.07 6.08 <0.001

(log+1) Windward -1.77 0.80 40.46 -2.20 0.03

Only predictors with p-value�0.1 are shown. Significant effects (p�0.05) are shown in bold. See S7 Table for full results.

https://doi.org/10.1371/journal.pone.0186146.t003
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increase mainly attributed to P. leopardus) was not explained by zoning (Wald test ANOVA,

Chisq = 2.42, p = 0.11). Wave exposure did not explain these differences but a weak effect of

benthic habitat structure was detected (Table 3). Reefs in the reserves which had back-reef

lagoon areas (in 10 out of 26 sites) had a considerably higher cover of branching corals (nearly

15%) compared to fished sites (less than 2%) which all lacked lagoon areas. However, removing

Fig 5. Management zoning effects on fish biomass. Observed biomass (mean ± SE) of highly targeted (a, b), less targeted (c, d) and

small (< 10 cm TL) non-targeted species (e, f) in fished reefs (blue bars) and reserves (orange bars) at each geographic location. Black

symbols and error bars (mean ± 95% CI) show the biomass predicted by the linear mixed model due to the individual effect of management

status (average biomass plus estimated effect of management). Statistical differences associated with either management and/or habitat (i.e.

benthos or wave exposure) are denoted: significant (**�0.05), marginal (* = 0.06), non-significant (ns).

https://doi.org/10.1371/journal.pone.0186146.g005
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lagoon areas did not affect the estimates of branching coral cover within reserves (nearly 15%

when lagoon areas are excluded). Consequently, even when similar habitat types were compared

(i.e. excluding lagoon areas), no reserve effects were detected on fish biomass (Wald test

ANOVA, Chisq = 0.007, p = 0.93). Therefore, benthic habitat cannot be discounted as a co-vari-

ate impacting fish biomass.

On northern outer reefs, the apparent lower biomass of highly-targeted species in reserves

compared to fished reefs (Fig 5B), was confounded by differences in habitat structure between

zones (Table 3) and variability among observers (S8 Table). Lower biomass of coral trout in

reserves (924.4 ± 212.0 g 120 m2 vs 2189.3 ± 632.0 g 120 m2 in fished reefs) was particularly

due to P. leopardus, P. laevis and Variola louti and was not attributed to zoning even when

comparing among similar habitat types (i.e. among windward or leeward sites only; Wald test

ANOVA, Chisq = 0.74, p = 0.38).

On central and southern outer reefs, the biomass of highly-targeted species did not differ

between reserves and fished sites (S6 Table). On central reefs, variability among observers

accounted for more than 50% of the variability in fish biomass (S8 Table). Specifically, there

was high variability in the biomass of coral trout in central outer reserves (3044.2 ± 1542.7 g

120 m2 in reserves vs 2523.6 ± 604.4 g 120 m2 in fished reefs). In southern outer reefs, an

apparent 5% increase in coral trout biomass inside reserves (1154.0 ± 306.8 g 120 m2 vs

1087.6 ± 349 g 120 m2 in fished sites), was only explained by differences in wave exposure

(Wald test ANOVA, Chisq = 4.54, p = 0.03).

Management zoning effects on less-targeted fish

In inshore reefs, weak interactive effects of zoning with wave exposure were detected (Wald

test ANOVA, Chisq = 3.05, p = 0.06). Wave exposure had contrasting effects on the biomass of

less-targeted species and this could have masked any reserve effect (Fig 5C). For example,

windward fished sites had nearly 2-fold less biomass than leeward sites (915 ± 374 g 120 m2 vs

1751 ± 590 g 120 m2), whereas windward reserves had more than 2-fold greater biomass com-

pared to leeward reserves (5475 ± 2150 g 120 m2 vs 2062 ± 313 g 120 m2). Therefore, we com-

pared among similar habitat types, but only weak reserve effects were detected in inshore-

windward reefs (pairwise ANOVA, Chisq = 4.10, p = 0.08). Similarly, zoning effects were not

evident in mid-shelf reefs (Fig 5C) probably due to the high variance in surveyor estimates (S8

Table). However, a weak effect of benthic habitat structure was detected (Table 3). When com-

paring among similar habitat types, a marginal effect of reserves was detected in mid-shelf

windward reefs only (pairwise ANOVA, Chisq = 4.60, p = 0.06) while accounting for benthic

habitat heterogeneity.

Zoning effects were found on central outer reefs (Table 3). Here, the effect of management

protection was significant even after accounting for differences in habitat structure (branching

coral cover was 2-fold greater in reserves compared to fished reefs). After factoring out the

effect of habitat from the model, a stronger effect of protection from fishing was detected

(Wald test ANOVA, Chisq = 3.05, p = 0.008). Differences in fish biomass on outer central

reefs were mainly attributed to the macroinvertivore Monotaxis grandoculis (Lethrinidae)

which had 2-fold greater biomass in reserves (Fig 5D).

Multivariate composition of non-targeted species

The assemblage structure of non-targeted species was also strongly associated with shelf posi-

tion which explained nearly 26% of variability (PCO1, Fig 6A and Table 2). Yet within-reef

variability was also important, explaining nearly 14% of total composition variability. Replicate

sites of the same reef aligned along PCO2 generating two groups (Fig 6B). The first group
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comprised those species that exhibit a negative relationship with PCO2 (Spearman <-0.5) and

included several damselfish species (family Pomacentridae) (Fig 6B). These species, Chromis
chrysura, Pomacentrus callainus, Amblyglyphidodon batunai and Neoglyphidodon melas form

large aggregations of up to 300 individuals and are common on shallow lagoon areas. The sec-

ond group of species associated positively with PCO2 and represented a more diverse assem-

blage of species including the planktivorous and omnivorous pomacentrids: Pomacentrus
amboinensis, Pomacentrus brachialis, Amblyglyphidodon leucogaster, Chromis ternatensis,
Acanthochromis polyacanthus, Amblyglyphidodon curacao followed by other small and

medium-size species from the families Labridae, Nemipteridae and Blennidae (Fig 6C). None

of the environmental variables–benthic composition, habitat type, wave exposure and depth–

showed a strong correlation with PCO2 (S2 Fig). Only a moderately strong correlation (Spear-

man = 0.5) was found with depth. On the contrary, we found that the divergence of species

along PCO2 was strongly associated with observers, suggesting that detectability of small spe-

cies was highly variable among surveyors (Fig 6D). Interestingly, when the biomass of large

predators was overlaid on PCO2, few piscivores were aligned with potential prey. Only P. leo-
pardus, which was consistently found in most of the reefs sites (in 122 out of 166 sites), exhib-

ited a moderately strong positive correlation (Spearman = 0.53) with PCO2 (Fig 6E).

Fig 6. Principle Coordinate Analysis (PCO) of the assemblage structure of non-fished species. Plots

show (a) ordination of reef sites along PCO1indicating shelf position, (b) within reef variability along PCO2

(separation of replicate sites of same reef), (c) species with strongest associations (Spearman >0.5) to PCO2:

pomacentrids are shown in black, (d) Observer’s identity associated with PCO2 variability, and (e) variation in

biomass of P. leopardus along PCO2. Biomass was log+1 transformed for analyses.

https://doi.org/10.1371/journal.pone.0186146.g006
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Management zoning effects on non-targeted fish (univariate analyses)

In the north, inshore and outer reefs exhibited a similar pattern of prey depletion in reserves

but for different underlying causes. While the biomasses of small (< 10 cm) prey in inshore

reefs was lower in reserves compared to fished reefs (Fig 5E), this pattern was attributable to

differences in habitat structure and observer estimates rather than a reserve effect per se
(Table 3, S8 Table). In contrast, a similar pattern of depletion for outer reefs (Fig 5F) was not

attributable to benthic structure (PCO2, Wald test ANOVA, Chisq = 2.76, p = 0.09). Habitat

effects also explained the apparently higher biomass of non-targeted fish in the reserves located

in mid-shelf reefs as well, but again, similar patterns on central and southern outer reefs were

not attributable to benthic structure (Table 3) and are likely to be explained by variability in

observers estimates (S8 Table).

Evidence for fishing the line

The size of fished reefs and their location relative to the shore did not influence fish biomass of

highly targeted species (Fig 7A and 7B). On the contrary, biomass was influenced by the proxim-

ity of fished sites to the nearest reserve (all located within 14 km; mean 7.0 ± 1.1 km) and reserve

size which ranged from 1.3 to 35.8 km2. Accounting for habitat heterogeneity and potential sur-

veyor bias, the biomass of highly targeted species decreased with greater proximity to reserves

(Fig 7D), particularly near larger reserves (Fig 7C) (ANOVA, t = 2.94, p = 0.005 and ANOVA, t

= -2.71, p = 0.008 respectively). Because no such relationships were found for the biomass of less

targeted species (ANOVA, t = -1.64, p = 0.13 for distance to reserve and t = -0.25, p = 0.80 for

reserve size) or non-targeted species (ANOVA, t = 1.00, p = 0.32 for distance to reserve and

t = 1.04, p = 0.33 for reserve size), our results are consistent with a ‘fishing the line’ effect and

suggest that the attraction of fishing reserve boundaries is greater for larger reserves.

Discussion

Because marine reserves provide benefits not only for fisheries, but also for local economies

and the environment, assessing the performance of marine reserves is crucial. While the

Fig 7. Spatial patterns of biomass of highly targeted species on reefs open to fishing. Fish biomass

(mean ± SE) as a function of (a) fished reef size (platform area in km2), (b) distance to shore (km), (c) size of

the closest reserve (platform area in km2), and (d) distance to the closest reserve (either no-take or no-entry

zone). Significant correlations (p< 0.05) show best-fit ± 95% confidence intervals. Biomass was sqrt-root

transformed for analyses.

https://doi.org/10.1371/journal.pone.0186146.g007
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GBRMP is the world’s largest network of marine reserves, to the best of our knowledge, little is

known about the performance of management zoning on the remote areas of the northern

GBR. Only a few studies have investigated the effect of fisheries management zoning in the

area north of Cooktown [42, 55, 65, 66] which corresponds to the southernmost locations of

the area studied here. In this relatively undisturbed environment, presumably subjected to

moderate to low fishing pressure, we did not find any differences in fish biomass between the

two ‘unfished’ zones of no-take and no-entry. However, we did find that fished versus the

broader grouping of unfished zones exhibited some impacts on targeted teleosts, but these

effects varied in space and were frequently confounded by differences in habitat structure

among zones. We found evidence that marine reserves can enhance the biomass of highly-tar-

geted piscivores such as lutjanids and less-targeted carnivores such as the lethrinid Monotaxis
grandoculis in some of the most remote areas of the GBR, indicating that protection from fish-

ing benefits fish populations even in relatively lightly fished areas. However, a specific analysis

on the highly prized coral trout (considering only Plectropomus and Variola species) demon-

strated no significant reserve effects. Importantly, results showed that the spatial distribution

of targeted fish outside large reserves may be affected by a “fishing the line” effect [58], i.e., an

intensification of fishing along reserve boundaries as an attempt to capture potential spillover

from higher fish biomass. Such a shift in fishing effort may affect the detectability of reserve

effects at a broad scale.

Positive effects of reserves were detected in inshore reefs where the biomass of highly-tar-

geted lutjanids increased by nearly two-fold compared to fished sites. In contrast, while there

was nearly three-fold greater biomass of highly-targeted fish in mid-shelf reserves vs. fished

zones, and specifically a five-fold biomass increase for P. leopardus, these contrasts were not

attributed to a zoning effect per se, but likely to habitat differences. It is likely that variability in

habitat characteristics between zones prevented detection of zoning-related effects. While fur-

ther sampling is required to corroborate the lack of a reserve effect on mid-shelf reefs, our

results on inshore reefs corroborate clear reserve benefits similar to other studies on inshore

reefs of the central GBR [9, 67, 68]. While age since implementation has an impact on the

effectiveness of marine reserves [24], only three reefs were recently established as no-take

zones in this study (10 years of protection). One reef was located inshore where reserves effects

on highly-targeted species were clear. The other two were located offshore and a separate anal-

ysis of large carnivores revealed that the new reserves appeared to outperform older reserves

(~30 years of protection) in the same region.

The magnitude of reserve impacts on targeted species within a given habitat will depend on

levels of fishing pressure and compliance (e.g. [67, 69]), which likely decrease from inshore to

offshore locations [50]. Reserve effects on offshore GBR reefs have been found to be generally

weaker [19] probably due to their greater distance from centres of human population. Here,

strong reserve benefits in offshore reefs were only detected for less-targeted species on central-

outer reefs. Compared to the intense and non-selective coral-reef fisheries found in many

countries like Jamaica[2], Philippines [6], and Kenya [70], reef fisheries on the GBR almost

exclusively focus on the highest trophic levels [50]. While it is a highly selective fishery, the

intensity of fishing in the northern GBR is expected to be moderate owing to the remoteness

of reef areas and the very low density of human population [52].

That reserve effects were found in some of the less-intensively fished parts of the GBR is

consistent with observations of lightly-fished systems elsewhere [71] and reinforces the high

sensitivity of carnivorous and piscivorous species to fishing [72]. However, discovering that

the benefits of protection from fishing were greater on reefs expected to be subjected to the

least fishing pressure (here, north inshore reefs) rather than on reefs closer to ports and

human settlements (here, southern reefs near Cooktown) was surprising. There are several
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contributing factors to this apparently paradoxical pattern. First, intense fishing in southern

areas may account for lower overall biomass of highly targeted species in that region (i.e.,

because of greater proximity to ports). Therefore, the relative scarcity of fish in fishable zones

may have driven fishers to undertake greater levels of poaching inside southern reserves. This

is the case for the central GBR, where poaching levels by recreational fishers are relatively high

and reduce reserve benefits [73]. Similarly, relatively low fishing pressure in northern-most

areas, which leads to greater stock levels, may reduce incentives to poach and foster greater

magnitudes of reserve effects.

An alternative mechanism contributing to variable strengths of putative ‘reserve effects’ is a

systematic pattern of greater habitat variation among zones in outer and southern reefs which

serves to confound and mask the magnitude of reserve effects. Variation in habitat structure

among zones could stem from direct and indirect impacts of fishing on corals that feed back to

fish populations. However, direct physical damage to corals because of fishing activities (e.g.

[74]) are unlikely because fishing methods in the GBR are essentially non-destructive (hook

and line and spearfishing [50]). Similarly, indirect impacts of fishing that favour the develop-

ment of fleshy algae [75] are unlikely because fishing on the vast majority of the GBR does not

target herbivorous fishes (though some trophic effects of mesopredators are feasible). Impacts

from stressors such as thermally-induced bleaching, COTS or cyclones that are likely to be

more frequent in southern reefs than the far north [34, 57, 76] could contribute to greater hab-

itat variation among zones and partly explain why we did not find consistent differences in the

benthic community structure between fished and reserve reefs but rather variation in habitat

structure independent of management status. Variation in habitat structure among zones

could also result from surveying different habitat types. For example, branching corals were

less abundant within reserves on northern outer reefs while on central outer reefs a greater

cover of branching corals was found in the reserves compared to fished reefs. Such variations

in coral community composition may be explained by differences in wave exposure among

reef sites. Because wave exposure also influence distribution of fish with different swimming

performances [77], different wave exposures among inshore and mid-shelf reefs may affect the

detectability of reserves effects on less-targeted species.

Reserves on the central (albeit northern) outer region were dominated by branching corals

(mainly Acropora and Pocillopora) and it is likely that this, rather than protection status,

accounted for the 8-fold increase in biomass of less targeted species in protected zones. High

complexity habitats like this frequently have a strong positive effect on fish density and mobile

invertebrates [78] and it is likely to impact large predators through facilitation of prey [29–31,

79]. Similarly, habitat effects appeared to coincide with fish biomass at large scales and con-

strain the detection of reserve benefits. Until recently, coral habitats on northern reefs were

likely to be healthier [35] and support greater fish biomasses than those in the south owing to a

lower stress exposure such as COTS outbreaks, cyclones and bleaching [34, 57]. Marine

reserves cannot escape from such environmental impacts. For example, in the Keppel Islands

(central GBR), a decline in the density of the coral trout in both fished and protected areas was

recorded after an extreme coral bleaching event [28]. Therefore, lower fish biomass on the

southern reefs near Cooktown could reflect greater losses in habitat structure (i.e. coral cover)

which may mask or limit the positive impact of marine reserves on fish stocks. The lower fish

population size in the south could also reduce stock resilience through greater recruitment

limitation. This would be expected to amplify the demographic significance of post-settlement

mortality and therefore the ‘confounding’ effects of differences in habitat quality [80].

Low population size of highly-targeted species in the south could also suggest that fishing is

likely to increase in a northward direction, as more commercial and recreational fishers move

away from the most heavily used and exploited reef areas [50]. This could also explain why we
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observed fishing effects on the inshore north reefs but not on the outer north reefs, supporting

the idea that fishing is likely to be greater in the more accessible nearshore (<50km) reefs than

offshore (>100km) [50]. Low fish population size in offshore reefs compared to inshore reefs

could also explain the lack of zoning effects offshore. On the GBR, inshore reefs tend to sup-

port higher abundance of both lutjanids and lethrinids compared to offshore reefs [81, 82].

Newman and Williams [81] showed that the cross-shelf variation in fish abundance on the

central GBR was essentially due to highly fished species (lutjanid species L. carponotatus and L.

russeli) that were characteristic of inshore and mid-shelf shallow reefs, but naturally rare on

outer reefs [81]. Similarly, and in accordance with our results, Emslie et al. [82] observed that

the abundance of L. vitta and L. carponotatus were highest on inshore reefs while that of P. lae-
vis and P. leopardus occurred mainly on mid and outer-shelf reefs [82]. Here, low densities of

highly targeted species were observed in offshore reefs (1.07 ± 0.1 ind. 120 m2) compared to

inshore reefs (11.6 ± 1.7 ind. 120 m2). Therefore, the decline in predatory fish abundance from

inshore to offshore reefs could have limited detectability of fishing effects in outer reefs.

Our results on non-targeted prey species contrast with those of Boaden and Kingsford [41]

which examined coral trout on the ribbon reefs of the GBR. In their study, coral trout abun-

dance was significantly depleted in fished reefs compared to reserves and benthic cover, which

was indistinctive among management zones, was a poor predictor of prey density (mainly

pomacentrids). Therefore, strong negative relationships were detected between predator den-

sity and that of small prey [41]. Here, no differences in the biomass of coral trout were detected

on the southern outer reefs (which include the ribbon reefs), therefore no top-down effects

were expected. However, on inshore reefs where a positive reserve effect on predators was

detected, the apparent top-down effect on prey density was actually explained by variability in

habitat characteristics between reserves and fished reefs. Here, habitat was a strong predictor

of prey abundance limiting detectability of top-down effects. Strong effects of benthic habitat

have also been found on other attributes of the fish assemblage that are susceptible to the

impact of fishing such as mean and maximum size, functional diversity, and the proportion of

herbivores among others [83]. This emphasizes how important it is to factor out the structur-

ing influence of habitat on coral reef fish from the effect of management, and underlines the

need of incorporating habitat structure into the design of surveys assessing the benefits of

marine reserves including the ability to elicit trophic cascades on coral reefs (e.g. [1, 39, 40, 48,

83]). Differences in species composition of both predators and prey could also contribute to

the contrasting results between studies. First, our analyses on prey included all fish species

smaller than 10 cm while Boaden and Kingsford [41] separated prey by functional groups.

Moreover, in the study of Boaden and Kingsford [41], coral trout and Lutjanus carponotatus
were the strongest predictors of prey abundance, particularly omnivorous pomacentrids. In

our study, coral trout biomass was indistinctive between inshore reserves and fished sites.

However, while we detected that the density of L. carponotatus almost doubled in inshore

reserves, it did not negatively correlate with the density of small omnivorous pomacentrids.

The very low abundance of L. carponotatus detected here (3.1 ± 0.3 ind. 120 m2) could have

limited detectability of top-down effects. Lack of detection of top-down effects in our study

could also result from the variability among observers which accounted for more than 50% of

the variability in prey abundance between zones. Our results show that the effect of surveyors

was greater for small fish than for large mesopredatory fishes. Variation in fish counts or the

detectability of small fish can result from poor environmental conditions (e.g. visibility), the

surveying technique, the surveyor’s expertise and their ability to detect species with certain

characteristics (e.g. small size, shyness, crypticity) [84, 85]. While observer effects are com-

monplace in fish studies, they were included explicitly in all relevant analyses.
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This study adds to the growing evidence of the effect of reserve size on nearby fishing

grounds [18, 20, 23, 24, 86]. The biomass of highly targeted species in fished sites declined

near reserve boundaries and even more strongly when reserves were large. Because similar cor-

relations were absent for less-targeted and non-targeted fish, it is likely that such patterns

reflected fishing rather than habitat artefacts. Thus, it seems likely that fishers ‘fish the line’

[58, 87] and obtain greater benefits by targeting larger reserves. While a direct analysis of

‘catch per unit effort’ is needed to corroborate spillover effects, evidence of the migration of

adult piscivores and larval export exist: 1) coral trout move distances of up to 7.5 km [88, 89]

which is greater than the average distance between fished reefs and reserves estimated here,

and 2) species such as the coral trout P. maculatus and the stripey snapper L. carponotatus
have been found to export 83% and 55% of their offspring respectively to fished reefs within 30

km on the GBR [14].

While no baseline data on fish stocks exist for a temporal assessment of the effectiveness

of marine reserves in the Far-Northern GBR, this study highlights the positive impact of

marine reserves in the remote areas of the GBR. Moreover, it shows that the impact of spa-

tial management is likely to be highly contextual and that comparing the efficiency of

reserves must account for differences in habitat, among other attributes. In this case, we

also needed to account for the counterintuitive effect of reserve size (i.e. decreasing fish bio-

mass in nearby fishing sites) to detect potential spillover effects, and account for differences

in spatial fishing effort and levels of compliance that are likely to counteract the magnitude

of the reserve effect.

While this study lacks temporal replication and fluctuations in fish biomass due to life his-

tory or ontogenetic migrations may have also contributed to the lack of detection of manage-

ment effects [89, 90], our results on southern reefs are similar to those observed by Casey et al.

[42] for the same reefs in a different year and season. In addition, our study could only investi-

gate two fished reefs inshore and only one on central-outer reefs. Therefore, our results need

to be interpreted with a degree of caution and further sampling would be desirable. However,

our results reinforce the need to distinguish the effects of changes in habitat structure from the

effects of management when assessing the impact of marine reserves on coral reefs [46, 48, 83].
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