163 research outputs found

    Very Low-Mass Stellar and Substellar Companions to Solar-Like Stars from MARVELS I: A Low Mass Ratio Stellar Companion to TYC 4110-01037-1 in a 79-day Orbit

    Get PDF
    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical amongst solar-like (Teff ~< 6000 K) binary systems. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged (~<5 Gyr) solar-like star having a mass of 1.07 +/- 0.08 MSun and radius of 0.99 +/- 0.18 RSun. We analyze 32 radial velocity measurements from the SDSS-III MARVELS survey as well as 6 supporting radial velocity measurements from the SARG spectrograph on the 3.6m TNG telescope obtained over a period of ~2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 +/- 0.012 days, an eccentricity of 0.1095 +/- 0.0023, and a semi-amplitude of 4199 +/- 11 m/s. We determine the minimum companion mass (if sin i = 1) to be 97.7 +/- 5.8 MJup. The system's companion to host star mass ratio, >0.087 +/- 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (Teff ~< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be co-moving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.Comment: 22 pages; accepted in A

    Measurement of the W-pair cross section in e+ee^+ e^- collisions at 172 GeV

    Get PDF
    The e+e- --> W+W- cross section is measured in a data sample collected by ALEPH at a mean centre--of--mass energy of 172.09 GEV, corresponding to an integrated luminosity of 10.65 pb-1. Cross sections are given for the three topologies, fully leptonic, semi-leptonic and hadronic of a W-pair decay. Under the assumption that no other decay modes are present, the W-pair cross section is measured to be 11.7 +- 1.2 (stat.) +- 0.3 (syst.) pb. The existence of the triple gauge boson vertex of the Standard Model is clearly preferred by the data. The decay branching ratio of the W boson into hadrons is measured to be B(W --> hadrons) = 67.7 +- 3.1 (stat.) +- 0.7 (syst.)%, allowing a determination of the CKM matrix element |Vcs|= 0.98 +- 0.14 (stat.) +- 0.03 (syst.)

    Measurement of the tau lepton lifetime with the three-dimensional impact parameter method.

    No full text
    A new method is presented for the measurement of the mean τ\tau lepton lifetime using events in which τ\tau's are pair-produced and both τ\tau's decay to hadrons and ντ\nu_\tau. Based on the correlation between the two τ\tau's produced at a symmetric e+ee^+ e^- collider, the 3DIP method relies on the three-dimensional information from a double-sided vertex detector and on kinematic constraints for the precise measurement of the τ\tau decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector at LEP, a τ\tau lifetime of 288.0±3.1±1.3288.0 \pm 3.1 \pm 1.3 \fs is obtained from the sample in which both τ\tau's decay to one charged track, and 292.8±5.6±3.0292.8 \pm 5.6 \pm 3.0 \fs from the sample in which one τ\tau decays to one prong and the other to three prongs. The results show small statistical correlations with those derived from other methods. When combined with the previously published ALEPH measurements, the resulting τ\tau lifetime is 291.2±2.0±1.2291.2 \pm 2.0 \pm 1.2 \fs

    Measurement of the tau lepton lifetime with the three-dimensional impact parameter method.

    Get PDF
    A new method is presented for the measurement of the mean τ\tau lepton lifetime using events in which τ\tau's are pair-produced and both τ\tau's decay to hadrons and ντ\nu_\tau. Based on the correlation between the two τ\tau's produced at a symmetric e+ee^+ e^- collider, the 3DIP method relies on the three-dimensional information from a double-sided vertex detector and on kinematic constraints for the precise measurement of the τ\tau decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector at LEP, a τ\tau lifetime of 288.0±3.1±1.3288.0 \pm 3.1 \pm 1.3 \fs is obtained from the sample in which both τ\tau's decay to one charged track, and 292.8±5.6±3.0292.8 \pm 5.6 \pm 3.0 \fs from the sample in which one τ\tau decays to one prong and the other to three prongs. The results show small statistical correlations with those derived from other methods. When combined with the previously published ALEPH measurements, the resulting τ\tau lifetime is 291.2±2.0±1.2291.2 \pm 2.0 \pm 1.2 \fs

    Measurement of the tau lepton lifetime with the three-dimensional impact parameter method.

    No full text
    A new method is presented for the measurement of the mean τ\tau lepton lifetime using events in which τ\tau's are pair-produced and both τ\tau's decay to hadrons and ντ\nu_\tau. Based on the correlation between the two τ\tau's produced at a symmetric e+ee^+ e^- collider, the 3DIP method relies on the three-dimensional information from a double-sided vertex detector and on kinematic constraints for the precise measurement of the τ\tau decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector at LEP, a τ\tau lifetime of 288.0±3.1±1.3288.0 \pm 3.1 \pm 1.3 \fs is obtained from the sample in which both τ\tau's decay to one charged track, and 292.8±5.6±3.0292.8 \pm 5.6 \pm 3.0 \fs from the sample in which one τ\tau decays to one prong and the other to three prongs. The results show small statistical correlations with those derived from other methods. When combined with the previously published ALEPH measurements, the resulting τ\tau lifetime is 291.2±2.0±1.2291.2 \pm 2.0 \pm 1.2 \fs

    Search for the bcb_c meson in hadronic Z decays

    Get PDF
    A search for the Bc meson decaying into the channels J/psi pi+ and J/psi l nu (l = e or mu) is performed in a sample of 3.9 million hadronic Z decays collected by the ALEPH detector. This search results in the observation of 0 and 2 candidates in each of these channels, respectively, while 0.44 and 0.81 background events are expected. The following 90\% confidence level upper limits are derived: Br(Z->Bc X)/Br(Z->q q )*Br(Bc->J/psi pi+) 3.6 10^-5 Br(Z->Bc X)/Br(Z->q q )*Br(Bc->J/psi l nu) 5.2 10^-5 An additional Bc->J/psi(e+e-) mu nu candidate with very low background probability, found in an independent analysis, is also described in detail

    Measurement of the tau lepton lifetime with the three-dimensional impact parameter method.

    Get PDF
    A new method is presented for the measurement of the mean τ\tau lepton lifetime using events in which τ\tau's are pair-produced and both τ\tau's decay to hadrons and ντ\nu_\tau. Based on the correlation between the two τ\tau's produced at a symmetric e+ee^+ e^- collider, the 3DIP method relies on the three-dimensional information from a double-sided vertex detector and on kinematic constraints for the precise measurement of the τ\tau decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector at LEP, a τ\tau lifetime of 288.0±3.1±1.3288.0 \pm 3.1 \pm 1.3 \fs is obtained from the sample in which both τ\tau's decay to one charged track, and 292.8±5.6±3.0292.8 \pm 5.6 \pm 3.0 \fs from the sample in which one τ\tau decays to one prong and the other to three prongs. The results show small statistical correlations with those derived from other methods. When combined with the previously published ALEPH measurements, the resulting τ\tau lifetime is 291.2±2.0±1.2291.2 \pm 2.0 \pm 1.2 \fs

    Measurement of the tau lepton lifetime with the three-dimensional impact parameter method.

    Get PDF
    A new method is presented for the measurement of the mean τ\tau lepton lifetime using events in which τ\tau's are pair-produced and both τ\tau's decay to hadrons and ντ\nu_\tau. Based on the correlation between the two τ\tau's produced at a symmetric e+ee^+ e^- collider, the 3DIP method relies on the three-dimensional information from a double-sided vertex detector and on kinematic constraints for the precise measurement of the τ\tau decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector at LEP, a τ\tau lifetime of 288.0±3.1±1.3288.0 \pm 3.1 \pm 1.3 \fs is obtained from the sample in which both τ\tau's decay to one charged track, and 292.8±5.6±3.0292.8 \pm 5.6 \pm 3.0 \fs from the sample in which one τ\tau decays to one prong and the other to three prongs. The results show small statistical correlations with those derived from other methods. When combined with the previously published ALEPH measurements, the resulting τ\tau lifetime is 291.2±2.0±1.2291.2 \pm 2.0 \pm 1.2 \fs

    Measurement of the W mass in e+ee^+e^- collisions at production threshold

    Get PDF
    In June 1996, the LEP centre-of-mass energy was raised to 161 GeV. Pair production of W bosons in e+e- collisions was observed for the first time by the LEP experiments. An integrated luminosity of 11 pb-1 was recorded in the ALEPH detector, in which WW candidate events were observed. In 6 events both Ws decay leptonically. In 16 events, one W decays leptonically, the other into hadrons. In the channel where both Ws decay into hadrons, a signal was separated from the large background by means of several multi-variate analyses. The W pair cross-section is measured to be sigma_WW = 4.23 +-0.73 (stat.) +- 0.19 (syst.) pb From this cross-section, the W mass is derived within the framework of the Standard Model: MW = 80.14 +- 0.34 (stat.) +- 0.09 (syst.) +- 0.03 (LEP~energy) GeV/c2

    Measurement of the W mass in e+ee^+ e^- collisions at 183 GeV

    No full text
    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 57 pb1^{-1} collected with the ALEPH detector in 1997 at a centre-of-mass energy of 183 GeV. The invariant mass distributions of reweighted Monte Carlo events are fitted separately to the experimental distributions in the qqbarqqbarqqbarqqbar and all l\nuqqbar channels to give the following W masses: mWhadronic=80.461±0.177(stat.)±0.045(syst.)±0.056(theory)GeV/c2m_{W}^{hadronic} = 80.461 \pm 0.177(stat.) \pm 0.045(syst.) \pm 0.056(theory) GeV/c^2, mWsemileptonic=80.326±0.184(stat.)±0.040(syst.)GeV/c2m_{W}^{semileptonic} = 80.326 \pm 0.184(stat.) \pm 0.040(syst.) GeV/c^2 where the theory error represents the possible effects of final state interactions. The combination of these two measurements, including the LEP energy calibration uncertainty, gives $m_{W} = 80.393 \pm 0.128(stat.)\pm 0.041(syst.) \pm 0.028(theory)\pm 0.021(LEP) GeV/c^2
    corecore