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Measurement of the � Lepton Lifetime

with the Three-dimensional Impact

Parameter Method

Abstract

A new method is presented for the measurement of the mean � lepton lifetime

using events in which � 's are pair-produced and both � 's decay to hadrons and �� .

Based on the correlation between the two � 's produced at a symmetric e
+
e
� collider,

the 3DIP method relies on the three-dimensional information from a double-sided

vertex detector and on kinematic constraints for the precise measurement of the �

decay angles. Using the data collected from 1992 to 1994 with the ALEPH detector

at LEP, a � lifetime of 288:0 � 3:1� 1:3 fs is obtained from the sample in which both

� 's decay to one charged track, and 292:8 � 5:6� 3:0 fs from the sample in which

one � decays to one prong and the other to three prongs. The results show small

statistical correlations with those derived from other methods. When combined

with the previously published ALEPH measurements, the resulting � lifetime is

291:2 � 2:0� 1:2 fs.
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1 Introduction

Since the early measurements of � lepton lifetime, several methods have been designed

to increase the precision [1]. The decay length (DL) method, based on the measurement

of the decay vertex in the three-prong � decays, has a high sensitivity but is statistically

limited due to the small branching ratios of three-prong channels and to vertexing

e�ciency. Other methods have been developed to use one-prong decays of the � . All are

based on the measurement of the impact parameter (IP) of the charged daughter track

with respect to the � production point, in the plane transverse to the beams. The simple

IP method depends on the knowledge of the � direction from the thrust or sphericity axis

of the decay products to sign the impact parameter, and the measurement is smeared by

the beam size. Other methods | impact parameter di�erence (IPD) [2], impact parameter

sum (IPS [3], momentum weighted IPS [4], miss distance [5]) | can alleviate one of the

uncertainties (� direction or � production point) but not both; in some cases, they are

furthermore very sensitive to the assumed detector resolution.

The new approach presented here is designed to overcome these limitations. Restricted

to events in which both � 's undergo hadronic decays, the procedure applies to one-prong as

well as three-prong decays. The decay angles are derived from two-body decay kinematics
and the method is independent of the uncertainty on the � direction. The uncertainty on

the � production point is minimised by measuring a quantity related to the miss distance
in space between the � decay tracks. As a three-dimensional method, it exploits the high
precision in r-� and z presently achieved with vertex detectors.

The method is applied to a sample of 105000 � pair events selected in the data taken
from 1992 to 1994 with the ALEPH detector at the LEP collider.

2 Method

2.1 � decay topology and kinematics

At LEP, the � ight distance in e+e� ! �+�� events is of the order of 2mm. The �
decay point can be measured only in three-prong decays (15% of � decays) with a typical
longitudinal error of 750�m and transverse error of 25�m. The � production point is

known only to the precision of the size of the beam luminous region, up to �150�m
transverse to the beams in the LEP plane and 7mm along the beams. Because of missing
neutrinos in the �nal state, the � direction cannot be directly deduced from its measured

decay products and the classical approximation of the � axis by the thrust or sphericity

axis of the event has a typical error of 30mrad. Therefore, neither the � path nor the

ight direction can be measured directly with accuracy. However, most of the information
can be recovered by using geometrical relations and kinematic constraints.

As shown in Fig. 1, vector relations between the � direction �̂ , the � decay length `, and

the direction of the decay track ĉ, can be inferred from simple geometrical considerations
in the three-dimensional space. Let C0 be the point on the extrapolated charged daughter

at the closest approach to the beam axis. C0 is de�ned by the measured parameters of

the track, �0, d0 and z0, respectively its azimuth, radial distance and coordinate along the
beam at the point of closest approach. In the case of three-prong decays, a sum track, as
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~C0

origin
~T0

closest point to beam axis

�ĉ

decay point

(�0; d0; z0)

`�̂

charged track

beam axis

� production point

Figure 1: Not-to-scale view of a � decay to one charged track. The decay angle is
exaggerated for the sake of the drawing.

de�ned from the secondary vertex and the vector sum of charged daughter momenta, is
used. Elementary geometry leads to the following equation:

~T0 + `�̂ = ~C0 + �ĉ (1)

where T0 is the � production point with respect to the coordinate origin, chosen at the

centre of the beam luminous region. Under the assumption that the � originates from
the beam axis, this equation, projected onto the r-� plane, leads to the classical relation

between impact parameter and decay length, d0 = ` sin � sin xy, where � is the � polar
angle and  xy is the azimuthal di�erence between � and charged track directions. The

projection onto the transverse plane has until now been the basis of all methods using

impact parameters. This choice resulted from the poor accuracy of z measurements from
the earlier tracking systems, from the large longitudinal size of the beam luminous region

and from the concern for minimising the projected acollinearity of the � 's in methods
using � pairs.

When both hemispheres are considered simultaneously, the � pair production point

cancels out in the di�erence of Eq. (1) as applied to �+ and ��. This is the basis of

impact parameter sum methods, where the e�ect of the beam size is strictly null when

the daughter tracks are back to back in the transverse plane. However the measurement is

impeded by the � direction uncertainty in the  xy angle determination. Conversely, the �

2



direction uncertainty cancels out in the di�erence of  xy angles used in the IPD method,

again under the assumption that the �+ and �� are back to back, but the transverse beam

size enters the � production point uncertainty twice.

The present approach is designed to be simultaneously insensitive to the beam size

and to the � direction measurement. Like IPD and IPS, the method assumes that the � 's

are produced back to back. To cancel the e�ects of the beam size, it measures, as IPS

methods do, the distance between the decay tracks at their points of closest approach to

the beam axis. The novel procedure is to depart from the conventional projection onto

the r-� plane and to rely on kinematics to de�ne an optimum projecting direction in

three-dimensional space.

According to two-body decay kinematics for � decays to hadrons and neutrino,

� ! ��h, the � direction is constrained to lie on a cone around the measured direction of

the hadronic system, with opening angle  :

cos =
2E�Eh �m2

� �m2
h

2P�Ph
; (2)

where E, P , m are the energy, momentum and mass, respectively. The � mass is set

to m� = 1:777GeV=c2 [6] and the � energy is taken equal to the beam energy, ignoring

radiative corrections; (Eh, ~Ph) is the measured four-momentum of the hadronic �nal state
h. The latter may be a complex object (a1, �, ...) of measured mass mh; its four-

momentum is then measured as the sum of the four-momenta of its charged and neutral
daughters.

When considering events in which � 's are pair-produced in a back-to-back topology
and both � 's decay to hadrons (42% of all � pairs), the common direction �̂ � �̂+ = ��̂�
lies along one of the intersections of the two cones [7] (Fig. 2). Considering not only
kinematics but also the � ight path in space, that twofold ambiguity can theoretically be
solved when both � 's decay to purely charged modes (without �0's). However, with

the present accuracy of vertex detectors, the ambiguity often cannot be resolved in
practice. Furthermore, the lack of precise information on the spatial origin of neutrals
prevents a straightforward generalisation of the procedure to � decays including �0's

and the ambiguity remains in those cases [8]. Still, from kinematics alone, three mutually

orthogonal vectors can be unambiguously and precisely measured: ~Ah and ~h?, respectively

the internal and external bisectors of the two � vector solutions, and ~H, the normal to the

ambiguity plane (Fig. 2). Their de�nitions rely only on the measurement of the hadron
directions, ĥ+ and ĥ�, and the � decay angles  � de�ned by Eq. (2).

The normal vector ~H, de�ned as

~H � ĥ+ cos � + ĥ� cos +;

is of special importance since in the absence of detector-induced distortions and ignoring
radiative corrections, it de�nes a direction strictly normal to the true � direction.

The orthogonality, de�ned by ��̂� � Ĥ, of the reconstructed ~H with the true ��

directions, is shown in Fig. 3 for e+e� ! �+�� events simulated in the ALEPH detector

at LEP. While the rms of the orthogonality angle distribution amounts to 35mrad, the

core is well �tted with a 1mrad wide Gaussian function. Tails extending beyond 20mrad
amount to 14.2% of the events. Part of the tails are caused by a bad measurement of

3



~h
?

~Ah

~H

�̂2

�

^h
�

�̂1

^h
+

Figure 2: Momentum space representation of the two kinematically allowed � axis
solutions, �1 and �2, de�ning the ambiguity plane. The three vectors ~Ah, ~h? and ~H

are mutually orthogonal. The ambiguity plane coincides with the h?-Ah plane and the
two hadrons, ~h+ and ~h�, lie in the Ah-H plane.

the hadronic �nal states, a�ecting the hadron directions ĥ� and cos �; the rest (�40%
of the tails) is due to hard radiation in the initial or �nal state, a�ecting cos � through
E� ; P� and/or inducing a large acollinearity between the two � 's. Unlike the conventional
methods working in the r-� projection, which are only sensitive to �nal state radiation

e�ects, the present method might be a�ected by initial state radiation as well. To reduce
the e�ect, the events suspected to populate the tails of the orthogonality plot are vetoed

as explained below (Sect. 3.3.2).

The choice of ~H as the projecting direction is the driving idea of the new method. It

is optimal as it is free from the � direction ambiguity and, compared to the projection
along ~Ah, it maximises the projected distance between the decay tracks.

2.2 Three-dimensional Impact Parameter relation

In Eq. (1), the distance � between the point of closest approach C0 and the decay vertex is
an unknown quantity. However an approximation of � within 0.1% on average is given by

the decay length ` itself, due to the transverse beam size and the decay angle being both

small (Fig. 1): at LEP energies, the latter does not exceed 170mrad even if the momentum

4
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Figure 3: Orthogonality between the reconstructed Ĥ and the generated � directions �̂�

in Monte Carlo (see text). Each � pair event enters the plot twice, with one entry per �

vector. The superimposed curve is a sum of three Gaussian distributions of widths 0:001,
0:006 and 0:034, respectively.

of the hadron is as low as 2GeV/c. Considering both hemispheres and assuming the � 's

to be back to back, �̂ � �̂+ = ��̂�, the di�erence of Eq. (1) applied to �+ and �� then
becomes

`+�̂+ � `��̂� ' (`+ + `�)�̂ ' ~�C0 + `+ĉ+ � `�ĉ� (3)

where ~�C0 � ~C+
0 � ~C�0 is the distance between the charged decay tracks at their points

of closest approach to the beam.

When projecting along the optimum direction ~H, the left-hand term vanishes, due to
the orthogonality with the true � direction. This leads to the basic three-dimensional

impact parameter (3DIP) relation

� ' `+�+ + `��� (4)

where � � � ~�C0 � Ĥ and �� � �ĉ� � Ĥ.

Equation (4) is formally identical to the IPS equation [3]: ignoring the measurement

errors, the expected � distribution is the algebraic sum of two exponential functions, with
slopes inversely proportional to the average � decay length � = �c�� . The combination

depends on the relative signs and magnitudes of ��. The measurement of the lifetime is

performed through an event-by-event maximum likelihood method similar to that used in
the ALEPH IPS analysis [3], with the lifetime �� as a free parameter, the projections along
~H of the track distance � and track directions �� as measured quantities, and Eq. (4) as
the constraining relation.

To visualise the similarities between the IPS and 3DIP methods, one can expand �,
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noticing that the charged tracks ĉ+ and ĉ� have almost back-to-back azimuths ��:

� � � ~�C0 � Ĥ
� (d+0 + d�0 )(Hx sin ���Hy cos ��) + (z+0 � z�0 )Hz (5)

with �� � (�+ + �� � �)=2.

While IPS is based on the track miss distance projected to the r-� plane, measured by

d+0 + d�0 according to the d0 sign convention, 3DIP is based on the track miss distance in

space, measured by d+0 +d
�

0 in the transverse plane and z+0 �z�0 along the beams. The 3DIP

method can therefore be regarded as an IPS method generalised to the three-dimensional

space.

However, the 3DIP and IPS methods di�er basically in the angular uncertainties

a�ecting the relationship between � and the decay angles. Since the undetected neutrinos

impede the reconstruction of the � direction, the r-� projections of the � decay angles

are determined in IPS with an uncertainty of �20mrad, which is comparable to the size

of the angles themselves. As a consequence, the decay angle error distribution must then

be numerically modelled by using simulated events. In the 3DIP method, the choice
of Ĥ as the projecting direction eliminates the uncertainty due to undetected neutrinos
and the only errors to be considered in the likelihood function are tracking errors. The

only smearing due to the projecting direction comes from its non-orthogonality with the
� direction when the term (`+�̂+ � `��̂�) � Ĥ does not actually vanish due to hadron
mismeasurement or radiative e�ects (see Sect. 4.2). Given the average values of decay

lengths at LEP energies and the 1mrad wide core of the orthogonality plot (Fig. 3), the
neglected term (`+�̂+� `��̂�) � Ĥ would naively be interpreted as an additional Gaussian

error of 4�m on �, to be compared to a typical tracking error of 50�m. However, because
that term is directly proportional to the decay length sum, and because of the correlation
between �̂ � Ĥ and the measured �� angles, a systematic bias of a few percent is induced

on the lifetime measurement. This is corrected by means of a Monte Carlo simulation as
explained in Sect. 4.2.

3 Experimental setup and data selection

3.1 The ALEPH detector

The ALEPH detector is described in detail in references [9] and [10] and only a

brief description is given here. The 3DIP method depends on the performance of all
major subdetectors, in terms of spatial resolution, energy measurement and particle

identi�cation.

Three tracking devices provide three-dimensional information on charged particle

trajectories: a large time projection chamber (TPC), a conventional drift chamber (ITC)

and a high resolution vertex detector (VDET). The VDET [11] consists of two layers

of double-sided silicon wafers. The inner layer, at an average radius of 6.5 cm from

the beam axis, covers 85% of the solid angle; the outer layer, at a radius of 11.3 cm,

covers 69% of the solid angle. Each layer provides r-� and z measurements. The spatial

resolution is 12�m for r-� coordinates and varies from 12�m to 22�m for z coordinates,
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depending on the polar angle. The ITC is made of eight concentric axial wire layers, 2m

long, and extends from 16 to 26 cm in radius; it provides r-� points with a resolution

of 150�m. The 4:7m long cylindrical TPC extends from 35 to 173.5 cm in radius. It

provides up to 21 spatial points with a typical average precision of 173�m in r-� and

740�m in z. The three tracking devices are immersed in a 1:5Tesla magnetic �eld,

parallel to the beam axis. For fully contained tracks, they yield a transverse momentum

resolution �p
?

=p? = 0:0006 p? � 0:005 (p? in GeV/c). For high-momentum tracks

with VDET hits in both layers the impact parameter resolution can be parametrised as

�d0 = �z0 = 25 + 95=p (p in GeV/c, �d0 and �z0 in �m) in both r-� and z coordinates.

The electromagnetic calorimeter (ECAL), placed inside the coil, is made of a barrel

part and two endcaps and covers 98% of the solid angle. The readout of the lead/wire

chamber layers is grouped in three stacks in depth, for a total thickness of 22X0, segmented

in 0:9� � 0:9� projective towers. The �ne spatial granularity ensures excellent photon

reconstruction. Assuming the neutral particles originate from the beam crossing point,

the resolution of polar and azimuth angles are ��= sin � = �� = 0:25+2:5=
q
E (GeV)mrad.

The energy resolution is �E=E = 0:009+0:18=
q
E (GeV). The return yoke, instrumented

with streamer tubes, acts as a hadron calorimeter (HCAL), 7 interaction lengths thick,

which provides an energy measurement and a digital pattern of the energy deposition. It
is surrounded by two layers of streamer muon chambers. The measurements of charged
particle momenta from the tracking devices and of neutral energies from the calorimeters

result in a typical resolution of 0:7GeV on the hadron energy and 1:3mrad on the hadron
direction in � decays.

Electrons are identi�ed by the speci�c ionisation information measured in the TPC,
by the consistency between the energy deposited in ECAL and the momentum measured

by the tracking devices, and by the longitudinal and transverse shower pro�les measured
in ECAL. Muons are identi�ed by the shower pattern in HCAL and a signal in the muon
chambers. The resulting misidenti�cation of leptons as hadrons is less than 0.6%, for a

hadron identi�cation e�ciency of 98.3%.

3.2 Selection of hadronic � decays

The lifetime analysis with the 3DIP method is performed on the ALEPH data collected

from 1992 to 1994 at LEP, at centre-of-mass energies near the Z0 peak (
p
s � 91:25GeV).

A sample of 105023 Z0 ! �+�� events is selected by using the standard ALEPH procedure

described in [12] to which a few complementary cuts described in [13] are added to

reduce the background contribution from non-� sources to 0.8%. An overall e�ciency,

including geometrical acceptance, of 78.8% is measured from a sample of 1.06 million
Monte Carlo events [14] going through the full detector simulation and selection procedure.
The analysis is performed on real data and Monte Carlo generated data. The latter is

used to estimate the biases in the method and adjust the results obtained from the data

accordingly.

Due to the branching fractions of the hadronic channels, the events in which both

� 's decay to hadrons are about 42% of the total sample. The analysis program designed
for the branching ratio studies [15] is used to select that subsample and to improve the

hadron energy measurement through an upgraded reconstruction of converted photons
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and �0 momenta. In order to reject interactions of the � daughters with the detector

material, the procedure also excludes the events with additional tracks having very large

impact parameters (jd0j > 2 cm or jz0j > 10 cm) or with hemispheres of even charge or

unbalanced signs. Only events with 1-1 or 1-3 topologies are considered in the present

lifetime analysis, at a loss of 4% due to events with higher charged multiplicities. Finally,

the analysed data sample at peak amounts to 31833 events with a contamination from

non-hadronic decays of less than 0.9%.

3.3 Quality cuts

As the 3DIP method uses both geometrical information (through ~�C0 and track angles)

and kinematics (through ~H), a rather severe selection is applied to ensure the quality of

the hadron measurement, both in terms of spatial parameters and in terms of energy.

3.3.1 Quality cuts on tracking

The selection procedure demands that each hemisphere has at least one well measured
track with momentum larger than 2GeV/c, satisfying severe criteria on the vertex detector

information, beyond the basic track quality requirements1:

� at least one r-� hit and one z hit in the same VDET layer

� the above hits (r-� and z) must not be shared with another track.

The latter requirement reduces considerably the track-hit misassociations occurring in
three-prong decays, due to the small decay opening angle, or in one-prong decays, when

the charged track overlaps with a pair from photon conversion.

Finally, a loose cut on the quality of the secondary vertex �t is applied to three-prong

events, requiring the probability P(�2vertex) to be greater than 0.1%.

3.3.2 Quality cuts on ~H measurement

To keep the smearing term (`+�̂+ � `��̂�) � Ĥ small with respect to tracking errors, the

tails of the orthogonality plot (Fig. 3) must be reduced. These tails are due to hadron
mismeasurement or hard photon radiation in the initial or �nal state. Since there is no

direct assessment of the orthogonality, an indirect quality selection is applied.

The selection makes use of the �̂ � Ĥ orthogonality and the � axis reconstruction from

kinematics being both underlain by common physics presumptions: both rely on the

absence of hard radiative emission and on the angles of each � decay being well measured.
The � direction reconstruction, up to the twofold ambiguity, comes from the reduction
of the cones, loci of each � around the daughter hadron, to their intersections under the

assumption that the � 's are back to back. It may happen however that the reconstructed

two cones do not intersect; this is the signature that the physics hypotheses are not

1jd0j < 1:0 cm, jz0j < 5:0 cm; at least eight TPC hits and two ITC hits. Looser cuts are applied to

the other two tracks of three-prong decays: P > 0:1GeV/c; jd0j < 2:0 cm, jz0j < 10:0 cm; at least four

TPC hits.
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Figure 4: �=�� versus orthogonality �̂
� �Ĥ; in Monte Carlo (a) 1-1 sample, (b) 1-3 sample.

� measures the angular distance between the decay cones and is de�ned in the text. Each
event enters the plot twice, with one entry per � direction.

satis�ed or that a large error is present in the hadron measurement due to �0's or neutral

hadrons escaping detection. The angular distance � between the two cones is de�ned from
the acollinearity angle � between the two hadron directions and the � decay angles  �:

� = 2max(�;  +;  �)� (�+ ++ �); its error �� is taken as �2� = �2� +�
2
 + +�

2
 � . There

are two possible � directions or none, depending on whether � is negative or positive,
respectively. Events in which � is positive indeed coincide with events in which �̂� � Ĥ is

signi�cantly di�erent from zero, as seen in Fig. 4.

The cut � < 3�� removes 12% of the 1-1 events and 16% of the 1-3 events. As the

average decay angle is smaller in the three-prong decays than in the one-prong decays,
the 1-3 con�guration is expected to be more sensitive to the �+�� acollinearity than the

1-1 con�guration, as observed from the larger rate of rejected events in the 1-3 sample.

After the cut is applied, the tails beyond 20mrad in the orthogonality angle distribution
are reduced from 14.2% to 6.4% of the �nal samples and the rms decreases from 35mrad

to 12:5mrad (Fig. 5).

3.3.3 Additional cuts and summary

A few events with unphysically large impact parameters (j ~�C0j > 2mm) or angles

(j�+ + ��j > 0:2) are rejected. Only events with a reasonable con�dence level enter
the lifetime �t. A likelihood probability P(F) is de�ned as the integrated probability for

an event to have a reconstructed � equal to or larger than the observed value. P(F) is
computed for a mean lifetime of 296 fs and events with a probability smaller than 10�3

are cut out.
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Monte Carlo sample. Each event enters the plot twice, with one entry per � direction.

Table 1 shows the number of events in each sample after the above cuts. The related

systematic uncertainties are discussed in Sect. 5.

Table 1: Number of events in each sample at the peak energy after the quality cuts.
Numbers in parentheses are e�ciencies with respect to the previous line

1-1 topology 1-3 topology

DATA MC DATA MC

Number of hadronic �+�� 21170 167107 10663 84646

Track quality 13913(0.6572) 122833(0.7350) 7354(0.6897) 64893(0.7666)

Prob(�2vertex) - - 5224(0.7104) 49347(0.7604)
� < 3�� 12264(0.8815) 108604(0.8842) 4394(0.8411) 41961(0.8503)

j�C0j < 2mm 12241(0.9981) 108373(0.9979) 4385(0.9980) 41878(0.9980)
j�+ + ��j < 0:2 12209(0.9974) 108024(0.9968) 4373(0.9973) 41771(0.9974)

P (F) > 10�3 12031(0.9854) 106508(0.9860) 4306(0.9847) 41267(0.9879)

4 Data analysis and results

4.1 Likelihood function

Ignoring radiative corrections to the � momentum, the � lifetime �� converts to a mean

decay length � = �c�� with a boost factor � = (E2
beam=m

2
� � 1)1=2. The distribution of

the true 3DIP � is the folding of two exponentials

dN

d��
=

1

���
exp

 
� ��

���

!
(6)
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0 is
computed at generation level and Ĥ is the reconstructed projection direction.

with the constraint that the two �� � (~T0 � ~C�0 ) � ~H sum up to � [8]. The expected
distribution for the observed 3DIP � is derived by convolving the true distribution Eq. (6)
with the experimental error functions. The resolution function is well approximated by

a Gaussian distribution (Fig. 6). A small contribution (�6�m on average) comes from
the transverse size of the luminous region (�beamx �110�m in 1992, 160�m in 1993 and
125�m in 1994; �beamy �5�m). It is interesting to note that the large spread of the beam

crossing region along the z-axis (�7mm) does not a�ect any of the components of the

� ~C0 measurement.

As already shown in Sect. 2.2, the measurement of �� is not a�ected by the undetected
neutrinos in � decay and tracking errors are small enough (�0:5mrad) to be neglected.

The likelihood function F for a given mean decay length � is therefore the convolution of

the true � distribution with a single Gaussian resolution function, of width � = ��:

F(�; �+; ��; �;�) = 1

2�(�+ � ��)
exp

 
� �2

2�2

!�
s+ expQ

2
+ erfcQ+ � s� expQ

2
�
erfcQ�

�

where Q� =
s�p
2

 
�

���
� �

�

!
, s� are the signs of �� and erfc is the complementary error

function.

Although the tracking resolution function is well described by a Gaussian distribution,

a calibration of errors is needed, on real as well as on simulated data, due to the imperfect

modelling of the tracking errors in the helix �t.

In previous impact parameter analyses [1, 3, 4], the d0 resolution was calibrated using

Monte Carlo and reference data samples like dimuon events or Z0 ! q�q events. In
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the present approach, the calibration is performed on the analysed data themselves. The

uncertainty on � due to tracking errors is scaled by a global factor �: �� = ��
Tracking
� ��BP� ,

which is �tted simultaneously with the mean lifetime �� in a two-parameter maximum

likelihood �t. The validity of this procedure is directly related to the fact that, in contrast

to the IPS method, no angular error a�ects the �-to-�� relationship (Eq. (4)). The

robustness of the two-parameter �t and the implications on the systematic errors are

addressed in detail in the following sections.

4.2 Orthogonality Correction

Equation (4) is established under the assumptions that the � 's are back to back and

the �nal hadrons are measured with no error, so that �̂ � Ĥ vanishes. In presence of

radiative emission and/or detector-induced distortions, the exact equation2 obtained when

projecting Eq. (3) to Ĥ is

� = `+(�+ � �̂+ � Ĥ) + `�(�� � (��̂� � Ĥ))

In that equation, the orthogonality terms ��̂� � Ĥ appear as corrections on the measured
angles ��. Although much smaller on average than � (�7%) and symmetrically

distributed about zero, orthogonality is not equivalent to a random angular uctuation.
When the size of �̂ � Ĥ exceeds the � decay opening angle, i.e., the angle between the �

and the charged track, the sign of �̂ � Ĥ is indeed correlated with the sign of ĉ � Ĥ, hence
with the sign of � (�� � �ĉ� � Ĥ). As a consequence, when the correction is ignored
in the likelihood function, the tails of the orthogonality distribution induce a systematic

underestimation of the � lifetime of a few percent.

To correct for that intrinsic bias, the lifetime result obtained from the data could be

shifted a posteriori by the same amount as observed in Monte Carlo. The alternative,
event-by-event procedure used in the present analysis minimises the bias a priori, by
correcting the measured angles �� by the average orthogonality h��̂� � Ĥi (��), as a

function of �� themselves. The correction as observed in Monte Carlo (Fig. 7) is applied
both to real and simulated data. Because the average opening angle, hence �, is smaller

in the 3-prong decays than in the one-prong decays, the relative correction is larger on
the 3-prong side. The correction is drastically reduced at large � by the orthogonality
cut (Sect. 3.3.2).

4.3 Results

The analysis has been performed on 1992, 1993 and 1994 data independently, and for

each LEP centre-of-mass energy. All mean lifetime results agree within statistical errors,

and in the following the combined results from the data taken at the peak energy are
presented.

2The equality holds for any projecting direction, in the �� ' `� approximation (Sect. 2.2).
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4.3.1 Results of the analysis of the 1-1 and 1-3 samples

The results of the two-parameter likelihood maximisation are summarised in Table 2 from
the 1-1 sample and the 1-3 sample.

Table 2: The �tted lifetimes and error calibration factors from the 1-1 and 1-3
samples. The assumed lifetime in Monte Carlo generation is 296 fs.

Data Monte Carlo

1-1 sample �� (fs) 286:94� 3:05 294:87� 1:03
� 1:3091� 0:0177 1:2470� 0:0058

1-3 sample �� (fs) 291:10� 5:59 294:26� 1:82

� 1:3189� 0:0254 1:2353� 0:0080

The lifetime values �tted on Monte Carlo are within statistical errors of the expected

value. Residual biases of �0:38� 0:35% (�0:59� 0:62%), are calculated in the 1-1

(1-3) analyses. After the results obtained in the data are adjusted accordingly, the
lifetimes measured in the 1-1 and 1-3 data samples are 288:0� 3:1� 1:0 (MC stat) fs and

292:8� 5:6� 1:8 (MC stat) fs, respectively.

The �tted values of the � parameter in Monte Carlo are consistent with the resolution

distributions (Fig. 6). Di�erences of (5:0 � 1:5)% in the 1-1 sample and (6:8 � 2:2)%

in the 1-3 sample are observed between the resolution scale factors �tted on data and
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Monte Carlo. This comes from residual alignment errors in data, imperfect modelling

of physical processes (nuclear interactions, multiple scattering) and detector (amount of

traversed material, VDET e�ciency) in Monte Carlo. However, because of the small

correlation between �� and � (see next section), no bias is induced on the lifetime �t by

these di�erences; the self-adjustment of the error calibration prevents the lifetime �t from

being sensitive to the resolution uncertainties, as discussed in the next section and Sect. 5.

4.3.2 �� - � decoupling

Weak correlations of �26:3% (�25:4%) between the errors on �� and � are measured

in the �ts over the 1-1 (1-3) samples. The analysis of the likelihood function reveals

that �� and � are determined by two distinct classes of events. This is illustrated by

Fig. 8, which shows the distribution of the second derivatives of the likelihood function

F(�; �+; ��; �;�; �) with respect to � and �. Only the events with a small likelihood

probability (P(F) < 0:2) enter the plot; the events with larger P(F) show the same

pattern as Fig. 8 but both second derivatives are smaller and consequently the events have

smaller weight in the maximum likelihood determination. The sample clearly subdivides
into two groups, Group A and Group B in the �gure, yielding complementary sensitivities

to � and �. The �rst class (large negative @2F=@�2 and @2F=@�2 � 0) has a large weight
in the � �t, but none in the � �t. They are events with long decay lengths with an

exponential j�j distribution (Fig. 8.b,c). The second class (large negative @2F=@�2 and
@2F=@�2 � 0) has a large weight in the � �t but none in the � �t. The � distribution is
Gaussian around zero (Fig. 8.b,d). They are \unphysical" events in which the measured

values of � and �� are incompatible with positive � decay lengths, but for resolution
e�ects. As there is no contribution from angular uncertainties, the � distribution of these

\unphysical" events gives a direct constraint on the tracking resolution.

5 Systematic uncertainties and checks

5.1 Selection-induced systematic errors

In order to estimate the e�ects of the selection procedure on the lifetime measurement,
the cuts are either switched on/o� or varied and an estimate of the error is inferred

from the maximum variation of the results. The main contribution comes from the

vertex probability cut applied to the three-prong decays which is responsible for a 0.61%
uncertainty in the 1-3 analysis. Residual non-� backgrounds or residual leptonic �

decays give negligible contributions (< 0:05%) to the systematic errors. The uncertainty
associated with the residual contamination of the 1-3 sample by � decays involving K0

S,

with K0
S ! �+��, is estimated by Monte Carlo simulation allowing for the branching

ratios of those channels to vary within their errors; the e�ect is negligible (< 0:02%).

5.2 Uncertainty on the orthogonality correction

Since the bias due to nonzero �̂ � Ĥ is corrected by means of the Monte Carlo,

discrepancies between data and Monte Carlo might induce a systematic shift of the lifetime
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measurement. Uncertainties on the �̂ � Ĥ orthogonality depend on the accuracy of the

simulation of the e+e� ! �+�� process, the � decay (radiative corrections, � polarisation,

branching fractions of poorly measured hadronic channels, e.g., involving K0
L) and the

detector response (photon reconstruction e�ciency, lepton identi�cation). As there is no

direct test of the orthogonality, the related systematic uncertainty is estimated on the

basis of measured quantities correlated to �̂ � Ĥ, e.g., the distributions of �� themselves

or the angular distance � between the decay cones. Data and Monte Carlo distributions of

relevant quantities are compared with the quality cut on orthogonality (�=�� cut) removed

in order to include the e�ect of that cut. The data to Monte Carlo ratios of the fractions

of events in the tails, of the average values or rms are checked for deviations from unity

and slopes with respect to �. No deviation from unity exceeding 2% (5%) is observed

in the 1-1 (1-3) samples, including statistical uctuations; slopes are consistent with zero

within statistical errors. When accounting for such uncertainties on the average �̂ � Ĥ
correction applied in the data, the �tted lifetime remains stable within 0.14% (0.40%) in

the 1-1 (1-3) sample. The resolution factor � is left unchanged.

5.3 Uncertainties of alignment corrections and resolution

function

Detector misalignments cause systematic o�sets in d0 and z0 impact parameter

measurements in real data. In 3DIP as in other IPS-like methods, the e�ect is however
largely cancelled due to the angular symmetries of the � pair event distribution. The

o�sets have been mapped as function of � and �, using the impact parameters measured
in e+e� ! q�q events with respect to the primary vertex. The lifetime is calculated after
the measured o�sets are subtracted. The e�ect of the correction is 0.25% (0.35%) in

the 1-1 (1-3) sample, dominantly from the d0 o�sets. The systematic error related to
detector misalignments is estimated from the observed changes when the o�set correction
is uctuated within its errors. Systematic uncertainties of 0.08% and 0.27% are assigned

for alignment errors on the lifetime, in the 1-1 and 1-3 samples, respectively. The �tted
value of the resolution factor � is minimal for the nominal values of the o�set correction

and increases by up to 2.5% when the correction is not applied.

Several checks have been made to investigate the stability of the lifetime measurement

against the uncertainties of the resolution function, which are the major source of
systematic errors in some methods.

The dependence of the lifetime �t on the parametrisation of the resolution function

has been studied. The multiplicative � scheme has been changed to an additive � scheme,
�� = �

Tracking
� � �BP� � �; the results of the �ts show no more than 0.14% change in

�� with respect to the multiplicative scheme, with a �tted � term of 35 � 1�m. The

three-prong error calibration �3 has been allowed to be 10% larger than the one-prong
�1 factor. When such a di�erence is assumed in the likelihood �t of the 1-3 sample, the

lifetime result changes less than 0.20%. The lifetime �t is also stable when one allows
for di�erent � factors for d0 and z0: a 0.06% shift of the lifetime is observed when a 6%

di�erence between transverse and longitudinal error calibrations is assumed, as observed

in resolution studies on Monte Carlo.

The stability of the measured lifetime has been checked with respect to an arti�cial
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degradation of the � resolution. Most of the e�ect of the additional error is borne by the

� factor which grows by 4% when the resolution degrades by 5%, while the �� �tted value

remains constant within less than 0.3%. Conversely, were the di�erence in � �tted in

Monte Carlo and data to be interpreted as an uncertainty on the resolution measurement,

the lifetime would not be a�ected by more than 0.3%. As a further check of uncertainties

related to the VDET track selection and material modelling, the �tted lifetime has been

studied as a function of the � polar angle; no e�ect larger than the expected statistical

uctuation has been observed.

Special care has been given to the e�ect of non-Gaussian tails of the resolution function.

Since they are not considered in the likelihood function, these contributions could cause

a bias in the lifetime �t. A discrepancy in the population of tails in real data compared

to Monte Carlo might then induce a systematic error. Non-Gaussian tails beyond 2��
amount to 6.7% of the 1-1 Monte Carlo sample and 7.3% of the 1-3 sample. From

resolution studies on real and Monte Carlo q�q events [4], it is assessed that the simulation

of the tails is accurate to 20%. The uncertainty on the non-Gaussian population has

di�erent consequences whether it a�ects the far tails (j� � �truej > 3��) or the near tails

(2�� < j� � �truej < 3��). The uncertainty of the near tails is totally absorbed by the
�tted calibration factor � and the lifetime is left unchanged (< 0:1% variation) in any

sample. When the Monte Carlo far tails are varied to account for the uncertainty (20%),
the � factor, which measures the core of the resolution function, is hardly a�ected. The
maximum variations of the �tted lifetime are nevertheless not larger than 0.25% in both

samples.

As the distributions of the resolution function are similar for muons and hadrons, but

for far tails [4], a check of the resolution �tted on real data is provided by the Z0 ! �+��

events. A sample of these \zero-lifetime" events has passed through the same selection and

analysis programs as the Z0 ! �+�� events, apart from the by-passed hadron selection.
The �tted scaling factor �Z

0
!�+�� = 1:258�0:006 is in excellent agreement with the width

(1:248 � 0:010) of the �=�� distribution of those events, which measures the resolution

calibration.

5.4 Summary of systematic errors

The above intrinsic uncertainties sum up to 0.3% in the 1-1 analysis and 0.8% in 1-3

analysis. They are summarised in Table 3, which also includes the Monte Carlo statistical

errors. The quoted total uncertainty assumes no correlations between the systematic

sources.

The stability of the lifetime measurement results from the fact that the two parameters

in the simultaneous �tting procedure are decoupled. Most of the e�ects on the lifetime �t

related to tracking uncertainties (resolution, alignment, vertex �t e�ciency) are damped

by the self-calibration of the � factor.
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Table 3: Summary of systematic errors in fs.
Sources 1-1 1-3

Monte Carlo statistics 1.03 1.82

Data selection 0.12 0.11
Cut on vertex �2 - 1.77

Orthogonality cut and correction 0.41 1.13

Resolution function uncertainties 0.75 0.78
Detector misalignment 0.23 0.78

Total 1.35 3.00

6 Correlations with other methods

The hadronic � decay events form subsamples of the samples used in the other methods:

the 1-1 events in the IPS-like or IPD analyses; the 1-3 events in the DL analysis. Some

statistical correlations between the present method and the others are therefore expected.
The correlations are computed by splitting the Monte Carlo samples into a number of

subsamples and �tting the lifetime separately by the di�erent methods.

Since the d0 sum enters the � de�nition (see the approximate expansion in Eq. (5)),

a correlation is expected between the present 1-1 analysis and IPS-like methods. It is
however damped by the projection to ~H and the z0 di�erence contribution. The correlation
factor is found to be 0:64� 0:06 for events in which both � 's decay to hadrons. The net

correlation with IPS-like results is however much smaller (0:30 � 0:06) since the latter
samples include leptonic decays. The net correlation with the IPD result is found to be

0:24� 0:06.

Even when the 1-3 analysis and DL are performed on the same � pair samples, a weak

correlation is expected between the 3DIP and DL methods since the latter uses only the
three-prong side of the event. Furthermore, for given decay lengths `�, the smaller the �
decay angle, the smaller the contribution to the 3DIP impact parameter �, and therefore

the smaller the weight on the lifetime �t. As the one-prong � decay angles tend to be
larger than the three-prong ones, the result of the 3DIP 1-3 analysis is consequently driven

by the one-prong side of the events. A statistical correlation smaller than 0:17 is obtained

between the DL and the 3DIP methods applied to the same samples. The net correlation
is 0:06� 0:05.

7 Conclusions

A new method has been developed to measure the � lepton lifetime in the Z0 ! �+��

events when both � 's decay to hadronic modes. The method is an impact parameter sum

generalised to three-dimensional space. As such, it is free from the uncertainties on the

� production point due to the beam size. The special projection of the decay-track miss

distance along an axis normal to the � direction, precisely de�ned from kinematics only,
makes the method free from the uncertainties on the � direction as well. The resulting

negligible angular smearing allows the experimental resolution to be �tted together with

18



the decay length, in a two-parameter likelihood procedure. The method is therefore self-

consistent and self-calibrating, independent from the resolution studies based on external

reference samples. A bias of a few percent arises from the projecting direction not being

strictly normal to the � direction, due to hadron mismeasurement or radiative e�ects.

It is corrected by means of a Monte Carlo simulation, with a related systematic error

estimated below 1 fs.

The results from the 3DIP method for 1-1 and 1-3 samples using the 1992{1994 ALEPH

data are

� 1�1� = 288:0� 3:1� 1:3 fs

� 1�3� = 292:8� 5:6� 3:0 fs;

respectively.

The two measurements agree within their errors. The combined result of 1-1 and 1-3

analyses is

�� = 289:0� 2:7� 1:3 fs:

Due to the restricted sample to which the method applies, and the choice of stringent

cuts made for the present analysis, especially on the track quality in the vertex detector,
the overall acceptance is about 12% with respect to the total number of � pair events

produced. However, the reduced statistics is somewhat compensated by the high
sensitivity achieved, 1:2=

p
N�� (with N�� the number of selected � pairs).

The 3DIP method uses information that is ignored in the other analyses: the z0
component of the impact parameter, and full detector information for the kinematical
reconstruction of the � decays. As a result, the 3DIP measurement is weakly correlated

with the other methods. The present results from 1992{1994 data are combined with the
previously published ALEPH measurements [4], taking into account the statistical and
systematic correlations. The combined result of the � lepton lifetime is

�� = 291:2� 2:0� 1:2 fs

with a �2 of 8.1 for 12 degrees of freedom. It is consistent with the most recent

measurements by other collaborations [16, 17, 18, 19, 20].
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