192 research outputs found

    Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production

    Get PDF
    © 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)

    Phase 1 Safety and Immunogenicity Evaluation of ADMVA, a Multigenic, Modified Vaccinia Ankara-HIV-1 B'/C Candidate Vaccine

    Get PDF
    in a modified vaccinia Ankara viral vector. Sequences were derived from a prevalent circulating HIV-1 recombinant form in Yunnan, China, an area of high HIV incidence. The objective was to evaluate the safety and immunogenicity of ADMVA in human volunteers.. Two volunteers mounted antibodies that were able to neutralize clade-matched viruses.ADMVA was well-tolerated and elicited durable humoral and cellular immune responses

    Integrating adolescent livelihood activities within a reproductive health program for urban slum dwellers in India

    Get PDF
    The Population Council’s Frontiers in Reproductive Health (FRONTIERS) program and Policy Research Division, in collaboration with CARE India, conducted an operations research study in Allahabad, Uttar Pradesh to examine the feasibility and impact of adding livelihood counseling and training, savings formation activities, and follow-up support to an ongoing reproductive health program for adolescents. The short-term objective of the study was to foster development of alternative socialization processes for adolescent girls that encourage positive sexual and reproductive health behaviors. The study also aimed to produce a replicable model for CARE and other agencies to use in adding livelihood activities to adolescent reproductive health programs. Results from the midline survey showed a positive impact of the intervention in terms of increased skill use, changing time use patterns, increased work aspirations, and more progressive gender role attitudes. Girls expressed satisfaction with the courses and trainers; many used their skills after completing the vocational courses; and they expressed a desire for the adolescent meetings to continue, seeing them as a time to relax and mingle with their peers

    Phase 1 Safety and Immunogenicity Evaluation of ADVAX, a Multigenic, DNA-Based Clade C/B' HIV-1 Candidate Vaccine

    Get PDF
    BACKGROUND: We conducted a Phase I dose escalation trial of ADVAX, a DNA-based candidate HIV-1 vaccine expressing Clade C/B' env, gag, pol, nef, and tat genes. Sequences were derived from a prevalent circulating recombinant form in Yunnan, China, an area of high HIV-1 incidence. The objective was to evaluate the safety and immunogenicity of ADVAX in human volunteers. METHODOLOGY/PRINCIPAL FINDINGS: ADVAX or placebo was administered intramuscularly at months 0, 1 and 3 to 45 healthy volunteers not at high risk for HIV-1. Three dosage levels [0.2 mg (low), 1.0 mg (mid), and 4.0 mg (high)] were tested. Twelve volunteers in each dosage group were assigned to receive ADVAX and three to receive placebo in a double-blind design. Subjects were followed for local and systemic reactogenicity, adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA. Cellular immunogenicity was assessed by a validated IFNgamma ELISpot assay and intracellular cytokine staining. ADVAX was safe and well-tolerated, with no vaccine-related serious adverse events. Local and systemic reactogenicity events were reported by 64% and 42% of vaccine recipients, respectively. The majority of events were mild. The IFNgamma ELISpot response rates to any HIV antigen were 0/9 (0%) in the placebo group, 3/12 (25%) in the low-dosage group, 4/12 (33%) in the mid-dosage group, and 2/12 (17%) in the high-dosage group. Overall, responses were generally transient and occurred to each gene product, although volunteers responded to single antigens only. Binding antibodies to gp120 were not detected in any volunteers, and HIV seroconversion did not occur. CONCLUSIONS/SIGNIFICANCE: ADVAX delivered intramuscularly is safe, well-tolerated, and elicits modest but transient cellular immune responses. TRIAL REGISTRATION: Clinicaltrials.gov NCT00249106.published_or_final_versio

    In Vivo Electroporation Enhances the Immunogenicity of an HIV-1 DNA Vaccine Candidate in Healthy Volunteers

    Get PDF
    DNA-based vaccines have been safe but weakly immunogenic in humans to date.We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP) in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines.This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.ClinicalTrials.gov NCT00545987

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF
    corecore