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A B S T R A C T

Rivers are among the ecosystems most sensitive to climate change. Whilst methods quantifying the impact and
uncertainty of climate change on flow regime are well-established, the impact on hydroecological response is not
well understood. Typically, investigative methods are qualitative in nature or follow quantitative methods of
limited scope, whilst the effect of uncertainty is frequently minimised. This paper proposes a coupled hydro-
logical and hydroecological modelling framework to assess the impact of climate change on hydroecological
response quantitatively. The characterisation and reduction of modelling uncertainties was critical to the de-
velopment of the framework. The ability of the framework is illustrated through application to a case study river,
the River Nar, Norfolk, England, using the UKCP09 probabilistic climate projections (high emissions scenario,
SRES A1F1). The results show that, by the 2050s, a reduction in instream biodiversity is virtually certain if future
emissions follow the assumptions of SRES A1F1. Disruption to the natural low flow processes, essential to
ecosystem functioning, is also indicated. These findings highlight the importance of the framework in water
resources adaptation, particularly with respect to future environmental flows management.

1. Introduction

The global climate system is changing, with changes to climatic
behaviour (mean and variability) projected beyond the 21st century
(IPCC, 2014). Climate change is expected to amplify existing pressures
on natural resources, as well as create new ones (IPCC, 2012). Amongst
these, freshwater is considered the most essential (Vörösmarty et al.,
2010); rivers and their ecosystems provide a diverse range of services
upon which humans are dependent (Yeakley et al., 2016), these in-
clude: fresh water supply for human consumption; hydro-hazard reg-
ulation; and water purification (Gilvear et al., 2017). It is thus through
freshwater resources, particularly rivers, that some of the most sig-
nificant impacts of climate change will be felt (Ostfeld et al., 2012).
Consequently, there are significant questions over the long-term sus-
tainability of water resources (Gleick, 1998, 2016; Klaar et al., 2014). It
is clear that effective water management is central to successful climate
change adaption (Ostfeld et al., 2012).

Climate is a major determinant of hydrological processes, where
precipitation, temperature and evaporation represent the dominant
drivers (IPCC, 2007). Consequently, a changing climate will inevitably
lead to alterations of river flow regimes (Rahel and Olden, 2008; Arnell
and Gosling, 2016). Attempts to model the impact of climate change on

water resources have been ongoing since the mid-1980s (Arnell and
Reynard, 1996; Christierson et al., 2012).

Climate projections are, however, subject to large unquantified
uncertainties (Murphy et al., 2004), leading to concerns over their
suitability for water resources adaptation and planning (Kundzewicz
et al., 2008; Wilby, 2016). Examples of these uncertainties include
(Clark et al., 2016; Wilby, 2016): (1) epistemic uncertainty, the in-
ability to properly capture the underlying processes and feedbacks; and
(2) accounting for variation due to natural climatic variability. In
practice, uncertainty dictates the usefulness of the model. Inaccurate
appreciation of this uncertainty precludes meaningful interpretation of
the model, leading to sub-optimal decision-making (Warmink et al.,
2010) when considering future projections. Clark et al. (2016) posit
that, research which focuses on characterising, reducing and re-
presenting (quantifying) these uncertainties may allow for the provision
of plausible flow projections under climate change. Difficulties with
regards to the quantification of climate uncertainty may be addressed
through the use of a perturbed physics ensemble: an ensemble of GCMs
where variation of the model parameters allows quantification of un-
certainty (Murphy et al., 2004; Clark et al., 2016). Such enhanced
projections have been available for the UK since 2009 through UKCP09.

Variability in the flow regime is widely acknowledged as the major
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determinant of ecological health in riverine ecosystems (e.g. Power
et al., 1995; Lytle and Poff, 2004; Arthington et al., 2006). Alteration of
this natural flow regime threatens the ability to provide ecosystem
services (Rahel and Olden, 2008; Vörösmarty et al., 2010; Arthington,
2012). Despite this, and perhaps surprisingly, the effects of climate
change on river health are rarely considered, as observed in Durance
and Ormerod (2007). Seven years later, Schlabing et al. (2014) de-
scribes little change, noting that even when accounted for, the metho-
dology employed is often over simplified and rudimentary. A brief re-
view of such work performed over the last two decades is thus indicated
(see also Fig. 1).

A large number of the studies investigating the impact of climate
change on hydroecological response have been qualitative in nature
(Fig. 1, level 1 to 3 directly; not pictured); examples include Meyer
et al. (1999); Ostfeld et al. (2012); Filipe et al. (2013) and Death et al.
(2015). Whilst the number of quantitative studies has increased, their
scope is often limited to the direct links between climate (temperature)
and hydroecological response (Fig. 1; for example, Durance and
Ormerod, 2007; Kupisch et al., 2012 and Jyväsjärvi et al., 2015). In
these studies, the impact of the altered flow regime is not considered
and rarely acknowledged.

Döll and Zhang (2010) were the first to consider the impact of cli-
mate change on the flow regime at a global-scale. Assessment of the
hydroecological impacts was qualitative in nature, with limited con-
sideration of changes in the number of endemic fish species (counts are
not considered meaningful bioindicators; for example see Li et al.,
2010). The authors acknowledge that quantitative estimates of eco-
system response “have not yet been derived”. Following this, studies of
a similar nature have been undertaken at higher resolutions (catchment
level); examples include Tang et al. (2015); Hassanzadeh et al. (2017)
and O'Keeffe et al. (2018). Advances have also been made in the as-
sessment of direct climate change impacts on the provision of fresh-
water ecosystem services (see conceptual framework in Pham et al.,
2019); though again these are, at present, qualitative in nature.

Merriam et al. (2017) perform a habitat assessment using a coupled

stream temperature and hydrological model. Whilst the focus is on the
availability of thermally suitable habitats for brook trout, and not flow
alteration directly, the study represents an important advancement to-
wards fully quantitative assessment of the instream ecological impacts
of climate change. Nevertheless, significant questions arise as to the
robustness of the applied methodology. The authors make assertions,
using phraseology such as “high degree of certainty”, when discussing
results based upon R-squared values and RMSE, a statistical measure of
average inaccuracy. Yet, the problems inherent to RMSE have been
recognised for some three decades (Willmott et al., 1985), and more
recently, Willmott and Matsuura (2005) conclude that, in the context of
climate study, model-performance evaluations based primarily on
RMSE are questionable and should be reconsidered. Further, issues
arise in the calibration of the hydrologic model, where performance is
assessed in terms of Nash-Sutcliffe, a statistic subject to long-standing,
broad, and sustained criticism (Legates and McCabe, 1999; Seibert,
2001; Criss and Winston, 2008). Indeed, Clark et al. (2016) state that,
when modelling the hydrological impacts of climate change, Nash-
Sutcliffe (and similar efficiency criteria) introduces additional, un-
accounted uncertainties. This disregard of uncertainty throughout the
paper calls into question the validity of the results.

It is clear that methods to quantify the impact, and associated un-
certainties, of climate change on the flow regime are well-established
(Fig. 1, level 1 and 2). The hydroecological implications are less well
understood and are rarely considered quantitatively; where attempts
have been made, the effect of uncertainty is underplayed. Conse-
quently, the impact of climate change on hydroecological response is
unclear, and the fallout for ecosystem services poorly understood. This
paper proposes a coupled hydrological and hydroecological modelling
framework to assess the impact of climate change on hydroecological
response quantitatively. The development of (each stage of) the fra-
mework has centred around the characterisation and reduction of un-
certainty, in line with the recommendations in Clark et al. (2016). The
outputs from this framework are quantitative hydroecological projec-
tions of climate change impacts. These outputs are intended to support
water resources adaptation, for example in the equitable allocation of
water for human use and the environment (known as environmental
flows). In order to validate and demonstrate the ability of the frame-
work, this paper features an application to a case study river, the River
Nar in Norfolk, England.

2. Framework

An overview of the three main stages of the proposed framework is
presented in Fig. 2. In stage 1, the hydroecological model is developed
based on advances made in: (1) Visser et al. (2017), where lag in eco-
logical response, an important component of flow variability (Monk
et al., 2017), is accounted for through the consideration of multi-annual
hydrological indicators; and (2) Visser et al. (2018a) present an in-
formation theory (IT) approach to minimise and quantify structural and
parameter uncertainty. The second stage of the framework is the
parameterisation of the hydroecological following a modified covar-
iance approach (Visser et al., 2018b). The modified covariance ap-
proach focuses on the replication of specific hydrological characteristics
(identified in stage 1), whilst also addressing a number of known lim-
itations and uncertainties in hydrological modelling. In stage 3, climate
projections serve as the input to the coupled model, providing the
quantitative hydroecological projections of climate change impacts.
Application of the framework to a case study river catchment is sub-
sequently considered in 3. Case study application.

A holistic depiction of uncertainty was central to the development
of the proposed framework. Additional commentary on the character-
isation and reduction of the sources of uncertainty, following Clark
et al. (2016), is provided in Appendix A.

In the development of this framework it is necessarily assumed that
the hydroecological relationship remains stationary (as in

Fig. 1. Pathways through which the impacts of climate change on hydro-
ecological response have been considered. Green indicates aspects which are
unique to the proposed coupled modelling framework. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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hydroclimatological modelling). The evolution of such relationships
remains an unknown and is beyond the scope of this paper. A further
important limiting factor of many hydroclimatological studies is the
focus on extreme climatic events (e.g. Filipe et al., 2013; Thornton
et al., 2014; Death et al., 2015). Climate models are well-known for
their ineffective simulation of extreme climate, particularly with re-
gards to precipitation (IPCC, 2014); knowledge of the impacts of ex-
treme events is therefore limited. In an effort to address this, the
UKCP09 climate projections distribution tails are clipped (5% and 95%
probability levels; Murphy and Sexton, 2013). In addition, changes in
climate mean and variability may lead to compound events or clustered
multiple events; these events are not extreme in themselves but can lead
to extreme events and/or impacts (IPCC, 2012). Essentially, severe
impacts can occur from minor climatic events. The focus of the fra-
mework is therefore on these impacts rather than stochastic (individual
extreme) events.

2.1. Stage 1 – hydroecological model

Statistical methods are well-established for the testing of hydro-
ecological hypotheses, these include: multiple linear regression (for
example, Clarke and Dunbar, 2005 and Monk et al., 2007), and multi-
level models (recent examples include Bradley et al., 2017 and Chadd
et al., 2017). Hydrological indicators (HIs) and ecological data serve as
the basis for the development of these models. With their sensitivity to
change, macroinvertebrates are ideal indicators of river health
(Acreman et al., 2008; EA, 2013). This response is determined by
considering macroinvertebrate flow velocity preferences as described
by the Lotic-Invertebrate Index for Flow Evaluation (LIFE; Extence
et al., 1999), a weighted index which takes into account the flow ve-
locity preferences of the macroinvertebrate community; LIFE scores can
range from one to twelve, indicating a preference for limited flow &
standing water to rapid flows respectively.

2.1.1. Data
The structure of the benthic macroinvertebrate community is sub-

ject to change throughout the year. Typically, peaks of activity occur in
spring (AMJ) and autumn (OND). Seasonal focus in hydroecological
modelling is determined by factors such as the quantity and quality of
the available data and the overall modelling objective. For example,
fishing is vital to the communities along the case study river, the River
Nar (Garbe et al., 2016). If the goal was to preserve future brown trout
populations, then modelling efforts would seek to protect their primary
food source, Ephemeroptera baetidae (mayfly), which hatch during the
spring season. Macroinvertebrate data may be utilised at the species or
family level; however, it should be noted that the use of family level
data may mask species-specific information (Monk et al., 2012), leading
to a reduction in accuracy (Extence et al., 1999).

A hydroecological dataset is created by pairing the ecological data
with HIs. These indicators should be ecologically relevant, reflecting
the five facets of the flow regime required to support the riverine
ecosystem (Richter et al., 1996): magnitude, frequency, duration,
timing and rate of change. To date, over 200 ecologically relevant hy-
drologic indices have been proposed (Olden and Poff, 2003; Monk
et al., 2006; Thompson et al., 2013). Should seasonality be present in
the hydrological regime, the time-series is split into relevant hydro-
logical seasons; the HIs are then calculated for each. A number of stu-
dies (on groundwater-fed rivers) have observed a delay in macro-
invertebrate response (for example, Boulton, 2003; Durance and
Ormerod, 2007). Visser et al. (2017) and Visser et al. (2018a) propose
the incorporation of time-offset HIs to account for this effect. The time-
offset may require fine-tuning if the number of indicators cannot be
sufficiently reduced in the steps below; beyond this, no additional work
is required.

With a large number of HIs, both variable redundancy and com-
putational effort represent significant challenges. In response, Principal
Component Analysis (PCA) is applied, allowing only those indices

Fig. 2. The three stages of the proposed coupled modelling framework to quantitatively assess the hydroecological impact of climate change.
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which describe major aspects of the flow regime to be identified; fol-
lowing Olden and Poff (2003), the most relevant indices are selected
proportionally from the five facets of the flow regime described above.
The ecological data is then be paired with this set of ecologically re-
levant HIs.

2.1.2. Statistical modelling
As further aspects of hydroecological relationships are understood,

such as ecological lag in response, the likelihood of modelling errors
and uncertainty is increased. To account for this, the proposed frame-
work makes use of an IT approach to determine the structure of the
hydroecological model (after Visser et al., 2018a). The IT approach
provides a robust measure of both structural and parameter uncertainty
(see Appendix A.1) as well as a measure of the statistical importance of
the model parameters (HIs; a central factor in the parameterisation of
the hydrological model, stage 2).

The application of the IT approach consists of 4 steps; for a more
detailed discussion see Appendix B.1 or Visser et al. (2018a). To sum-
marise: (1) candidate models are evaluated with respect to the second-
order bias corrected Akaike Information Criterion (AICc, equation (B1);
after Burnham and Anderson, 2002); (2) a best approximating model is
inferred from a weighted combination of all the candidate models; (3)
the parameters are ranked, such that the highest value (Akaike weight,
equation (B3)) represents the most important in the model; (4) mea-
sures of uncertainty (structural and parameter) are made.

In the development and application of the framework, the IT ap-
proach was applied using the R package glmulti (Calcagno, 2013), de-
veloped and applied in a relevant discipline (see Isbell et al., 2011). In
glmulti, a genetic algorithm (GA), a type of optimisation that mimics
biological evolution, is used to select a subset of models (each assessed
based on the above IT approach). The GA incorporates an immigration
operator, allowing removed HIs to be reconsidered. Immigration sees
the level of randomisation increase, and hence the likelihood of model
convergence on the global optima rather than some local optima
(Calcagno and de Mazancourt, 2010). Inference from a consensus of 5
replicate GA runs has been shown to greatly improve convergence
(Calcagno and de Mazancourt, 2010). The multi-model average is
subsequently derived from this subset of models. Parameters where the
estimate and confidence intervals are zero (i.e. certainty that the index
is not to be included), are then removed. In line with Anderson (2007),
the set of model parameters is reduced to those accounting for 95% of
the cumulative information (see Appendix B.2).

For validation of the hydroecological model see Appendix C.2.

2.2. Stage 2 – hydrological model

The HIs identified in stage 1 represent those characteristics of the
flow regime which dominate ecological response. Driven by climate
projections (Fig. 2), changes to these HIs may be determined from flow
time-series simulated via hydrological model. Climate projections,
input to the coupled hydrological and hydroecological model, allow the
impacts of climate change on hydroecological response to be de-
termined quantitatively (stage 3). This second stage of the proposed
framework focusses on the parameterisation of the hydrological model.

Clark et al. (2016) highlight model parameterisation as a major
source of uncertainty. Typically, hydrological models are parameterised
following a split-sample calibration-validation approach, with calibra-
tion focussing on the goodness-of-fit between observed and simulated
flow. Limitations of the approach are widely acknowledged, these in-
clude (Westerberg et al., 2011; Clark et al., 2016): (1) bias in the model
parametrisation as the result of disinformative data (Pelletier, 1988;
Montanari et al., 2013); (2) the arbitrary nature of GOF statistics; and
(3) equifinality (Beven, 2006).

In this proposed framework, the modified covariance approach
(Visser et al., 2018b), based on Vogel and Sankarasubramanian (2003),
is applied in an attempt to address these limitations (see also Appendix

A.1). In Visser et al., 2018b, comparison relative to studies with similar
modelling objectives (the simulation of ecologically relevant HIs)
showed improvement in both model performance and consistency. A
further major advantage of the approach lies in the focus on identifying
the region of parameter space which best captures the characteristics of
the HIs, providing a greater understanding of model suitability, lim-
itations and uncertainty.

2.2.1. Hydrological model
To further minimise uncertainty, a parsimonious lumped hydro-

logical model should be selected. In the development of the framework,
the daily models from the GR (Génie Rural) suite of hydrological
models were considered (GR4J, GR5J and GR6J; 4–6 free parameters).
The GRJ models have been applied in a variety of hydrological con-
texts, examples include: Le Moine et al. (2008); Perrin et al. (2008);
Coron et al. (2012); Smith et al. (2012); Coron et al. (2017). With ob-
served moments lying outwith the simulated moments (see section
2.2.2), the five and six-parameter models GR5J and GR6J were re-
jected.

Continuous (daily) time-series of flow, precipitation and potential
evapotranspiration serve as model input. The time-series should be of
sufficient length for validation on the climate baseline in stage 3 (for
example, the UKCP09 baseline is 1961–1990).

2.2.2. Modified covariance approach
The hydrological model is parameterised following the modified

covariance approach, as set out in Visser et al. (2018b). In using this
approach, the modelling objective is not the replication of a flow time-
series, rather, it is the identification of the region of parameter space
which is best able to replicate the HIs. For a more extensive discussion
of the modified covariance approach see Visser et al. (2018b).

In the application of this approach, the complete parameter space of
the hydrological model is sampled. The number of parameter sets is
dependent upon the number of free parameters and the level of un-
certainty adjudged acceptable. To reduce bias, the parameter space
should be sampled uniformly; for example, using Sobol quasi-random
sequences (a Quasi-Monte Carlo method; Caflisch, 1998). The para-
meter sets thus established, the hydrological model is run in simulation
mode using observed climate data. For each of the n time-series, the
covariance (between observed climate and simulated flow) is calcu-
lated; this is repeated for the observed flow data. The HIs, identified in
stage 1, are then determined from both the observed and simulated
flows.

Prior to the selection of a parameter set, it is first necessary to va-
lidate the hydrological model structure. This is facilitated through plots
of the observed and simulated relationships between the covariances
and HIs. The model is validated if the moments agree, i.e. observed
moments lie within the simulated moments (sampled parameter space).
Error thresholds, in combination with index importance (determined in
stage 1), are used to identify a suitable parameter set. A linear re-
lationship between the minimum and maximum error thresholds and
index importance is defined. Parameter sets which fall below this de-
fined limit are rejected. For additional details see section 3, Case Study
Application or Visser et al. (2018b).

The focus of the covariance approach is on the replication of specific
hydrological characteristics in the catchment (the HIs), as opposed to
flow. Consequently, the hydrological model should be assessed in terms
of its ability to replicate these characteristics rather than the observed
flow time-series. Indeed, the replication of the time-series is anticipated
to be poor, consistent with similar work focussed on the replication of
catchment characteristics (e.g. see Seibert, 2000).

2.3. Stage 3 – projections

2.3.1. UKCP09 weather generator
The UKCP09 Weather Generator (WG) was selected due to its ability
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to represent natural (climatic) variability (Murphy et al., 2009; Kay and
Jones, 2012). This consideration of natural variability allows extra-
ordinary (low probability) climatic events to be captured more effec-
tively (Schlabing et al., 2014), which is particularly important for
ecosystems (Wigley, 1985). The WG creates synthetic stochastic time-
series of climate variables based on observed climate statistics. The WG
is perturbed to represent future climate through the application of
change factors. Projections are at a 5 km resolution, allowing for re-
presentative simulation across smaller catchments (< 1000 km2, ty-
pical in the UK; Kilsby et al., 2007; Jones et al., 2010). Data requests are
submitted using the UKCP09 web-based portal (http://
ukclimateprojections-ui.metoffice.gov.uk/ui/admin/login.php). The
climate variables of interest are precipitation and potential evapo-
transpiration; note that, potential evapotranspiration may also be
computed from the hourly time-series. The CMIP4 SRES scenarios upon
which UKCP09 was based does not assign probabilities to specific
emissions scenarios (Wigley and Raper, 2001; Meehl et al., 2007;
Murphy et al., 2009); consequently, it is assumed that each emissions
scenario is equally probable (Murphy et al., 2009).

For the validation of the WG output, UKCP09 recommend com-
parison of the observed and baseline climate data in the form of bi-
monthly and seasonal plots of the mean and 95% confidence intervals
(for each climate variable; DEFRA, 2011). To this end, linear bias cor-
rection is applied bi-monthly (where necessary).

2.3.2. Baseline validation
The baseline climate data is used to validate the framework. The

generated climate variables are input into the hydrological model,
generating a range of possible flow time-series; for each time-series, the
important HIs are calculated (per hydrological year/season). These
indices can be assessed relative to the observed indices (determined in
Stage 2). Validation is through cumulative distribution and probability
density functions (CDF and PDF respectively), comparison of the mean
and 95% confidence intervals.

With these indices and the hydroecological model, a range of pos-
sible LIFE scores for the baseline period may be determined; validation
is as above. If the length of the ecological time-series is insufficient, an
alternative approach may be applied; this is further considered in the
application of the framework.

2.3.3. Future hydroecological projections
Simulation of future hydroecological projections (LIFE) is analogous

to the validation, with the exception that the future climate projections
serve as the input data. Each emissions scenario/time-period should be
considered distinct.

3. Case study application

The ability of the framework is both validated and demonstrated
through application to a UK case study river. Descriptions focus on the
case study specific data acquisition and preparation, the subsequent
analysis being as per the described framework.

3.1. Study area

The Nar represents a vulnerable and important river type (ground-
water-fed chalk stream), already subject to significant stress (NRT,
2012). The additional threat of climate change to its ecological poten-
tial cannot be understated. It is intended that the power of this new
proposed framework be illustrated in its application to this case study
river.

The spring-fed River Nar rises in the Norfolk chalk hills (52.749°N,
0.812°E), 60 m above sea level, flowing west for 42 km before joining
the River Great Ouse (52.748°N, 0.394°E). The formation of the fen
basin, and resultant dissection of the chalk, created two distinct river
units, delineated by a significant gradient change at Narborough (Fig. 3;

Sear et al. (2005)). With a greater abundance and quality of ecological
data (Visser, 2015), the focus is on the 153.3 km2 chalk sub-catchment.

The hydrology of the River Nar is characteristic of pure chalk
streams (Sear et al., 1999), with a high Base Flow Index (0.91; Sear
et al., 2005) and relatively low flows: mean 1.12 m3/s, Q10 2.03 m3/s
and Q90 0.49 m3/s over the available record, where Q10 and Q90 re-
present the 10% and 90% flow exceedance respectively (equivalent to
90th and 10th percentiles). A reliance on groundwater results in a
highly seasonal flow regime, where aquifer recharge primarily occurs in
winter months, leading to a progressive rise in river flow until March/
April.

3.2. Stage 1 – hydroecological model

Routine macroinvertebrate sampling by the Environment Agency
(and prior custodians) has been ongoing since 1985 (NRT, 2012); from
1992, the sampling methodology follows the Environment Agency's
standard semi-quantitative protocol (see Murray-Bligh, 1999; data
available upon request from the Environment Agency, 2018). Only
samples identified to species level and collected in the spring season
(AMJ; peak of macroinvertebrate activity) were considered. The LIFE
scores were calculated for a total of seventy-two macroinvertebrate
samples (1993–2012).

Hydrological data was extracted from the National River Flow
Archive (1990–2012; CEH, 2018) at the Marham gauge (52.678°N,
0.548°E; Fig. 3). The hydrological data was subdivided into six subsets:
two hydrological seasons, winter (ONDJFM) and summer (AMJJAS)
and three time-offsets (0–2 years). A total of 63 6× ecologically re-
levant HIs were considered; this was reduced to 29 through PCA. This
reduced set of HIs were then paired with the LIFE scores to create the
hydroecological dataset.

3.3. Stage 2 – hydrological model

For parameterisation of the hydrological model, 54 years of daily
average flow recorded at the Marham gauge were extracted (September
1961 to 2015). The corresponding climate variables were computed
from daily average rainfall and hourly temperature data at 5 MIDAS
stations in and around the catchment (Fig. 3; Met Office, 2016). The
parameters of interest are the average daily precipitation (P) and po-
tential evapotranspiration (PE); P is determined via the computation of
the daily catchment average rainfall, whilst PE is estimated from hourly
temperature data using the temperature-based PE model from Oudin
et al. (2005).

In order to verify the method of investigation, n = 100,000 para-
meter sets were generated using Sobol sequencing. The HIs used to
parameterise the model are those indicated by the hydroecological
model in stage 1.

In the parameterisation of the hydrological model, the minimum
and maximum error were specified as 17.5% and 35% ( error2 min× )
respectively, from which the linear threshold was determined (the re-
lationship between the minimum and maximum allowable error and
the relative importance of the variables; covariances were assigned a
relative importance of 1).

3.4. Stage 3 – projections

To address a number of the uncertainties indicated in the in-
troduction (see also Appendix A.2), the UKCP09 probabilistic climate
projections are used. The 2050s (2040–2069) high emissions scenario
(A1F1 SRES) is considered. This emissions scenario is approximately
equivalent to a change in temperature of 4.3 °C by 2081–2100 (relative
to the pre-industrial period 1850–1900; Riahi et al., 2011; Met Office,
2018b). For demonstrative purposes, the UKCP09 WG was run for the
full range of 10,000 variants.
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4. Results and discussion

4.1. Stage 1 – hydroecological model

The hydroecological model, a linear multi-model average, is de-
picted in Equation (1) (overleaf). Summaries of the HIs are provided in
Table 1; importance represents the relative weight of evidence in sup-
port of each index in the model (according to IT), whilst the relative
parameter uncertainty is the 95% confidence interval relative to the
parameter estimate. The underlying hydroecological processes are first
considered, followed by a review of the predictive ability and un-
certainty associated with the hydroecological model.

LIFE R Log riseMn Q Q

Q Q Q Q Q Q
RevPos logQVar

0.07 10 90 0.07 0.93 80 50

0.02 90 50 0.3 90 50 0.11 70 50
0.04 0.5

w t w t s t
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4.1.1. Underlying hydroecological processes
The winter hydrological season, when the chalk aquifer recharges,

features both the most and least important HIs, 10R90Log and riseMn
respectively. The indicator 10R90Log, ratio of low flows to high flows
(10th to 90th percentiles), is described as an indicator of responsiveness
(Richards, 1990). The log-scale of the index, coupled with its im-
portance, means that there is scope for 10R90Log to dominate the hy-
droecological model, both positively and negatively. Fig. 4 clearly il-
lustrates that large values of 10R90Log correspond with the highest
LIFE scores, and vice versa. It is only when 10R90Log is small (∼0) that
the other six indices contribute to LIFE score. Varying high and low
flows shows that the highest values of 10R90Log, and hence LIFE, are
achieved when high flows are medium-high
( P Q0 exp( 90(log( ))) 1< < ). Given the log-space, the scope for a ne-
gative impact ( P Qexp( 90(log( ))) 1> ) is large. Surprisingly then, whilst
magnitude of flow is of importance for the recharge of the aquifer,
higher winter flows may actually negatively impact the macro-
invertebrate community. The negative sign of the HI riseMn indicates a
preference for a low mean rise rate in winter flows. However, the low

importance of the index (Table 1) sees it consistently contribute less
than 2.5% to the LIFE score (Fig. 4).

In terms of hydrological season, the summer months (AMJJAS)
dominate the hydroecological model. There is an indication that, in the
summer months, consistency in flow (low range/variation) is preferred:
(1) a sustained increase in flow (RevPos) sees a large negative impact on
LIFE (importance = 0.80); (2) though not as important, logQVar simi-
larly implicates large variation in flow; and (3) minimising the range
between low and median flows (Q70Q50, Q80Q50 and Q90Q50) has an
increasing effect on LIFE.

Looking to Fig. 5, four out of the five summer HIs are lagged (S-1).
Essentially, these indicators are influencing the health of the river two
years in advance; should there be a bad summer, with lots of variation,
the consequences could be severe. However, the presence of the
Q80Q50 indicator in the immediately preceding season gives some
scope for improvement. However, it is also worth noting that the ne-
gative impacts of a ‘bad summer’ would only be felt if the value of the
index 10R90Log was low, whilst if 10R90Log is largely positive or ne-
gative, the preceding summers are of limited importance.

In terms of management, it is clear that summer floods in particular
could be detrimental to the health of the river; perhaps representing an
argument for improving connections to flood plains. Similarly, ex-
tremely high winter flows may be harmful, indicating there may be
scope to abstract and store waters during the winter months for use in
summer. However, it is worth noting that negative impacts are also a
necessary component of the proper ecosystem function; for example,
they might act as a ‘natural reset button’ (Everard, 1996; Lake, 2003).
Interestingly, the majority of the indices are dimensionless (with the
exception of logQVar and riseMn), this allows for some scope for var-
iation in flow without causing excessive damage; for instance, in
summer, a need for increased abstraction need not necessarily be a
detriment to river health (though this assumption ignores the other
effects of decreased flow).

4.1.2. Predictive ability and uncertainty
The predictive ability of the model is first indicated by the relative

parameter uncertainty (unconditional variance, or 95% CI, relative to

Fig. 3. River Nar catchment. Data sampling and recording sites/stations are marked; climate data is recorded at the MIDAS stations. Inset: Location of the River Nar
in the UK.

Table 1
The HIs indicated in the hydroecological model in descending order of importance. The facets of the flow regime are denoted as M (magnitude) and R (rate of
change); the hydrological seasons are indicated by W (winter) and S (summer).

Facet Season & time-
offset

Index name Description Unit Importance Relative parameter
uncertainty

– – Intercept – – 1.00 0.39
M W-0 10R90Log Ratio of log-transformed low to high flows: log (P10)/log (P90). Log-transformation

represents the log-normal distribution of flow.
– 0.86 1.29

R S-1 revPos Number of days when flow is increasing (positive reversals). days 0.80 1.00
M S-0 Q80Q50 Characterisation of moderate low flows; Q80 relative to the median. – 0.51 2.40
M S-1 logQVar Variance in log flows. m3s−1 0.37 2.96
M S-1 Q90Q50 Characterisation of low flows; Q90 relative to the median. – 0.19 3.47
M S-1 Q70Q50 Characterisation of moderate low flows; Q70 relative to the median. – 0.09 4.18
R W-0 riseMn Mean rise rate in flow. m3s−1 0.07 6.43
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the parameter estimate; Table 1). Generally, as relative parameter un-
certainty increases, the importance of the index decreases; this is one of
the advantages of the weighting of the HIs in the IT approach (Visser
et al., 2018a). The fact that the most important index, 10R90Log, has
greater uncertainty than the second most important, RevPos, suggests
that this may be the best parameterisation possible in the model.

With regards to the implications of parameter uncertainty, further
inference may be made through the consideration of the 10,000 Monte
Carlo simulations (Fig. 6). The plot shows that the hydroecological
model performs well (low interquartile range of 0.44 and relative error
centred around one; perfect agreement). This level of uncertainty is
considered satisfactory.

4.2. Stage 2 – hydrological model

Fig. 7 (a) depicts the observed and simulated relationship between
the covariance of precipitation and flow, P Q( , ), and the HI Q80Q50;
Fig. 7 (b) depicts the same relationship for the climate variable po-
tential evapotranspiration, PE Q( , ). For all seven HIs, the observed
moments lie within the simulated moments, validating the use of the
hydrological model.

The capacities of the production (x1) and routing (x3) stores were
estimated as 511 and 311 mm respectively; the time elapsed for flow

routing is approximately 1.17 days (x2). Inflow from the chalk aquifer
is represented by a positive groundwater exchange coefficient (x4) of
2.84 mm per day. The level of agreement for all seven HIs is sum-
marised in Table 2. With a value of 0.8, the largest covariance relative
error is for potential evapotranspiration; this is considered acceptable

Fig. 4. Values of the index 10R90Log vs the relative contribution of each of the HIs (see Appendix C.1) included in the hydroecological model (baseline projections,
1960–1990).

Fig. 5. Timeline indicating the impact of seasonality and timing on hydroecological response for the case study catchment. MI sampling occurs in spring. The
hydrological seasons are indicated as W (winter) and S (summer).

Fig. 6. Hydroecological model parameter uncertainty; distribution of the re-
lative error for 10,000 MC simulations.
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as precipitation is considered the principal determinant of flows in the
East Anglia region (Kay et al., 2013). The HI relative errors are
below ± 11%, with the exception of the least important index, riseMn
(relative error = 34%). Overall, the level of relative error in the hy-
drological model is considered satisfactory; the impacts of the error in
the index riseMn are likely negligible (based on the findings from the
hydroecological model). For standard model validation, see Appendix
C.3.

4.3. Stage 3 – projections

4.3.1. Baseline validation
The ability of the framework to reproduce the observed data, hy-

drological and hydroecological, is assessed via CDFs and PDFs. For the
CDF plots, the observed function should situate within the boundaries
of the baseline projections; ideally, centrally. The PDF plots focus on
relative error, where a value of 1.0 indicates perfect agreement; here
the objective is on a low interquartile range (IQR). In the interests of
concision, validation of the hydrological projections centres on the
index Q80Q50, selected both due to its high importance (0.80) and ease
of interpretation (ratio of moderate low flows to median flows); sum-
mary tables for all seven HIs are available in Appendix C.4.

4.3.1.1. Hydrological model validation. The validation plots for the HI
Q80Q50 are presented in Fig. 8. Fig. 8a/d are based on the UKCP09
baseline (1961–1990); both satisfy the objectives outlined above: the
CDF of the observed values lies within the projections and the PDF
shows a low IQR. Comparatively, the 95% confidence interval (CI)
appears large, however, given the probabilistic nature of the projections
this is not unexpected. The baseline interval for which ecological data is
available (1986–1990) is summarised in Fig. 8b/e. The IQR is similar to
the 30-year baseline, with a minor improvement in the 95% CI; given
the limited time-period, the right-skew of the PDF (Fig. 8e) cannot be
ascribed significance. On the alternative baseline (2010–2017), the CDF
is notably stepped (Fig. 8c); this is reflected in the PDF (Fig. 8f) with a
local maximum, and a median not equivalent to one (perfect
agreement). Despite this, the IQR is the lowest of the three validation

plots.
Overall, for the CDF's, the observations lie centrally within the

probabilistic projections, whilst the PDF's reveal low IQR's. The plots
satisfactorily validate of the use of the UKCP09 projections through the
hydrological model.

4.3.1.2. Coupled hydrological-hydroecological model validation. There is
no ecological data (species LIFE) available for the period 1961–1990
(baseline validation period). However, sampling and identification of
macroinvertebrates to the family level was carried out during the
period 1989–1990, allowing for some comparison. To further address
this, an alternative baseline was established through consideration of
the earliest time-period considered by the UKCPO9 WG (2010–2039;
reduced to 2010–2015), run for the medium emissions scenario for
1000 randomly sampled variants. Subsequently, the climate variables
are bias corrected relative to the observed data in this period.

Validation plots for the hydroecological response, LIFE, as predicted
by the coupled model, is presented in Fig. 9a/c for the baseline
(1986–1990) and Fig. 9b/d for the alternative baseline (2010–2017);
recall that for the period 1986–1990 only family LIFE data is available.
On this baseline period, the CDF's (Fig. 9a) are in agreement, with a
small IQR for the relative error of approximately 0.1 (Fig. 9c). The
somewhat swollen 95% CI may have a threefold explanation: 1) family
level application of the LIFE methodology tends to underestimate hy-
droecological response (Extence et al., 1999; Monk et al., 2012); 2) the
limited number of years/data points; and 3) the probabilistic nature of
the projections. For the alternative baseline (2010–2017), the CDF
(Fig. 9b) is in agreement. The PDF (Fig. 9d) also reveals a lower IQR
(relative to Fig. 9c) as well as an improved 95% CI.

Although the temporal range of the validation is limited, both time
periods are able to achieve a satisfactory level of performance, thereby
validating the use of the UKCP09 projections and the coupled hydro-
logical-hydroecological model. The use of the coupled model is thus
considered fit for purpose in application to future projections.

4.3.2. Future projections
The UKCP09 climate projections for the 2050s time slice of the high

emissions scenario were inputted to the coupled hydrological and

Fig. 7. Comparison of observed and simulated relationships covariance be-
tween (a) P Q( , ), and the HI Q80Q50; and (b) PE Q( , ), and the HI Q80Q50.
The observed relationship and selected parameter set are highlighted.

Table 2
The level of agreement between the observed and simulated HIs.

Index Importance Observed Simulated Relative error

10R90Log 0.86 −0.822 −0.881 1.07; +7%
RevPos 0.8 1988 2156 1.08; +8%
Q80Q50 0.51 0.669 0.674 1.01; +1%
logQVar 0.37 0.426 0.408 0.96; −4%
Q90Q50 0.19 0.510 0.565 1.11; +11%
Q70Q50 0.09 0.776 0.770 0.99; −1%
riseMn 0.07 0.085 0.113 1.34; +34%

Fig. 8. Validation plots for the HI Q80Q50 on the baseline in its entirety
(1961–1990; left); the baseline period for which there is corresponding eco-
logical data (1986–1990; middle); and the alternative baseline (2010–2017;
right).
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hydroecological model. The focus herein is on this hydroecological
response. The projections of hydroecological response are first con-
sidered relative to the baseline through the CDFs and PDFs in Fig. 10.

Looking to the means first (dashed lines), the projected change is
relatively small, however, there is a consistent increase in the range of
possible LIFE scores across the distribution. The increase in maximum
LIFE scores appears responsible for the majority of this change, though,
some may also be attributes to the minimum values, specifically, the
tails of the distribution (percentile < 0.375). In Fig. 4 it was shown
that the index 10R90Log was the main determinant of higher LIFE
scores; it can thus be presumed that from percentile > 0.75, the in-
crease in LIFE scores is the result of an increased stability in the ratio of
high to low flows in the winter season. Where percentile < 0.75, the
five summer HIs are likely to dominate, a further indication of in-
creased stability of flows in the river.

Fig. 11 gives an indication of the probability of these hydro-
ecological projections. These probabilities are in line with calibrated
language used by the IPCC since AR4 (Treut et al., 2007; Mastrandrea
et al., 2010, Table 3). Widening the confidence interval, from about as
likely as not to virtually certain increases likelihood but results in a wider
estimate. Overall, the bounds of uncertainty are relatively narrow,
however, it is clear that the greatest confidence lies in the interquartile
range, rather than the tails of the distribution. It should also be noted
that, whilst the change to maximum LIFE scores is still in evidence, the
decrease in LIFE scores at the lower distribution has disappeared, in-
dicating a lack of certainty in those projections.

Whilst Schlabing et al. (2014) also observed limited changes in the
central tendencies, they also note that it is important to consider the
tails of the distribution. Although these events lie outwith the

probabilities indicated in Fig. 11, this may be justified due to the ability
of the WG to capture low-frequency events (Dubrovský et al., 2004;
Mehrotra and Sharma, 2007). As in Schlabing et al. (2014), Fig. 12
looks to the hydroecological response at the 5th and 95th percentiles. It
is important to note that LIFE scores at these percentiles will be pri-
marily determined through the winter HI 10R90Log.

At the 5th percentile, LIFE scores < 4.5 account for only 0.016% of
observations and are therefore omitted. Broadly speaking, the fre-
quency of lower LIFE scores appears to decrease under the future pro-
jections. Consequently, there is almost a 10% increase in the number of
LIFE scores equal to 7. For the 95th percentile, LIFE scores > 9.5 ac-
count for 0.0244% of the total observations and are therefore omitted.
With a marked increase in the frequency of LIFE ≥ 8, the positive
change in hydroecological response previously observed (Figs. 10 and
11) is clearly in evidence.

4.4. Implications for the case study river

The proposed framework has indicated a clear hydroecological re-
sponse to the projected changed climate under the A1F1 high emissions
scenario in the 2050s. However, the magnitude and direction of change
is projected to be both small and positive. The scale of this change is in
line with the UKCP09 projections for the East Anglia region under this
scenario. In this region, the projected change in mean annual pre-
cipitation is small, ranging from ± 5% across the 10th to 90th percen-
tiles (Met Office, 2018); note that Kay et al. (2013) observe that hy-
drological response in East Anglia is principally determined by
precipitation. Further, the range of LIFE values is known to be small,

Fig. 9. Validation plots for hydroecological response based on a baseline period
(1986–1990; left); and the alternative baseline (2010–2017; right).

Fig. 10. Distribution of the future projections of hydroecological response,
LIFE. Solid lines indicate the maximum and minimum values whilst the dashed
lines represent the mean.
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particularly in the IQR (based on the BIOSYS database of ecological
data across 548 catchments in England (Environment Agency, 2018),
the IQR for 546 catchments is 1). Therefore, the observed change
signal may be presumed to represent a true change in community
structure.

Figs. 10 and 11 indicated a clustering of LIFE scores; visually this is

most clear with the 1.375 increase in the mode (Fig. 10b). This is re-
flected in the summary statistics, for example, the kurtosis of the LIFE
score distribution increases from 16.6 to 18.4. This flattening of the
hydroecological response is a possible indication of a reduction in
biodiversity. If this were to be the case, this would increase the vul-
nerability of the river overall, monocultures being far more susceptible
to local extinction. Further, the reduced frequency of events where LIFE
scores fall very low, could impact negatively upon the river, robbing the
ecosystem of vital, natural reset events (Everard, 1996; Lake, 2003).

4.5. Framework limitations

Limitations of the framework centre around the assumptions of
stationarity and data availability. In climate change modelling, pro-
jections are often based on historic climate, with the assumption that
the statistical properties of the climate remain stationary. This as-
sumption is inherited under both hydroclimatic and coupled modelling.
The corollary is an enforced assumption that ecological response re-
mains the same as it is now; consequently, at this time, it is not possible
to account for the adaptive response of the riverine community.

A barrier to hydroecological studies has been the lack of paired
long-term hydrological and ecological time-series (Monk et al., 2007,
2012). This problem persisted in the development of the hydro-
ecological model. For example, in the UK, routine macroinvertebrate
sampling began circa 1990 (Murray-Bligh, 1992). Therefore, given the
baseline of 1960–1990, validation is limited. To address this, an alter-
native baseline was derived. The use of climate projections with a more
up-to-date baseline, for example, the soon to be released UKCP18
projections or a WG trained using CMIP5 or CMIP6 climate data would
also address this.

5. Conclusions

The implications for flow regime make rivers among those ecosys-
tems most sensitive to climate change (Death et al., 2015; Watts et al.,
2015). Whilst studies have attempted to assess the impact of climate
change on hydroecological response, methods are often qualitative or
follow quantitative methods of limited scope. The resulting lack of
clarity renders the fallout for ecosystem services effectively an un-
known. In answer, the proposed framework provides a quantitative
approach, developed using methods which minimise uncertainty (in
line with recommendations in Clark et al., 2016).

Fig. 11. Projections of hydroecological response bounded by the IPCC likelihood confidence intervals set out in Table 3.

Table 3
Uncertainty terminology as used by the IPCC (Treut et al., 2007; Mastrandrea
et al., 2010); the third column indicates the confidence interval specified in this
study.

Term Likelihood Specified CI

Virtually certain 99–100% probability 99.5%
Very likely 90–100% probability 95%
Likely 66–100% probability 85%
About as likely as not 33–66% probability 50%

Fig. 12. Percentage distribution of LIFE scores at the 5th and 95th percentiles.
LIFE scores < 4.5 and > 9.5 are omitted due to the low frequency of occurrence
(discussed in-text).
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The ability of the framework has been illustrated through applica-
tion to a case study river. The projected hydroecological response in
April–June, the period of peak MI activity in the river, is considered
under the A1F1 high emissions scenario in the 2050s. The hydro-
ecological response is in line with climate projections for the East
Anglia region. The projections indicate that a reduction in biodiversity
is virtually certain; a possible disruption to low flow processes essential
to ecosystem functioning is less strongly indicated. It should be noted
that, whilst the projected hydroecological change may be limited, the
River Nar is strongly influenced by groundwater (BFI = 0.91).
Consequently, the impact of changes in precipitation may be reduced;
thus, greater change in response might be expected in catchments
where surface runoff dominates.

In summary, the proposed framework serves as a new and dynamic
tool with the potential to provide valuable information in the pursuit of
more accurate assessments of the impact of climate change on river
ecosystems. Critically, and possibly uniquely in the field (Bennett et al.,
2013), the end user will also be provided with a quantifiable measure of
uncertainty in the hydroecological projections. Further applications of
the framework include water resources planning and future environ-
mental flow management. In recent years, hydroecological modelling is
often undertaken using a regime-based spatial framework (for example
Monk et al., 2011; Zhang et al., 2012). In a similar manner, the pro-
posed framework may be extended to cover multiple rivers of similar

flow regime classification. Such generic projections of the impact of
climate change on hydroecological response might thus be used to plan
wider adaption measures, including for ungauged rivers, where ap-
propriate. The projections may also be used to assess the implications of
climate change on the provision of instream ecosystem services (e.g.
through the framework set out in Ncube et al., 2018).

Data availability

Consent has not been given to share the data used in this study;
however, these data are freely available from the original sources: the
Environment Agency (EA, 2018; macroinvertebrate sampling records);
Met Office (2016; climate, precipitation and temperature); National
River Flow Archive (CEH, 2018; gauged flow at Marham); and data
requests for the climate projections may be submitted using the
UKCP09 web-based portal (http://ukclimateprojections-ui.metoffice.
gov.uk/ui/admin/login.php).
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Appendix A. Uncertainty

A.1 Stages 1 and 2

Table A1
Types and sources of uncertainty that are addressed in stages 1 and 2 (hydroecological and hydrological modelling) of the proposed framework.

Stage Type of uncertainty Source Controls

1 Sampling and measure-
ment error

Input data Standardised methodology for the collection of macroinvertebrate samples. Case study specific.
Quality control checks on observed flow data. Case study specific.

Variability Climate internal variability Length of observed time-series; covering range of climatic periods (wet/dry). Case study specific.
Structural uncertainty Model selection PCA: Addresses parameter redundancy.

IT: Genetic algorithm searches for global optimum rather than local.
Multi-model average, not a single best model.

Parameter uncertainty Model selection and para-
meterisation

Confidence intervals.
Weight of supporting evidence, referred to as ‘importance’.

2 Measurement error Input data Quality control checks on observed flow and climatic data.
The modified covariance approach does not calibrate based on goodness of fit statistics, thereby reducing the bias of
the parameterised model (see also ref myself).

Variability Climate internal variability Length of observed time-series; covering range of climatic periods. Case study specific.
Structural uncertainty Model structure The modified covariance approach rejects model structures if the observed and simulated moments do not coincide.
Parameter uncertainty Parameterisation The modified covariance approach focusses on replicating the essential characteristics of the catchment explicitly.

The relative importance of the HIs is known; error thresholds for each HI may be specified accordingly.
Equifinality The modified covariance approach considers the full parameter space which is narrowed down to a small region

which is able to best replicate the HIs of interest.

A.2 Stage 3 – Climate projections

Climate change projections are central to the application of the proposed framework. It is recommended that probabilistic climate projections,
which consider a range of impacts, be used when applying the proposed framework. In the case study application, the UKCP09 probabilistic climate
change projections are used, specifically, the weather generator product. The application of the framework is not limited to UKCP09, other sources of
probabilistic climate change projections include: the COMEPRO project in the Mediterranean region (Kaspar-Ott et al., 2016; Ring et al., 2018); the
MIT IGSM-CAM framework (Monier et al., 2013a), applied over Northern Eurasia (Monier et al., 2013b); and UKCP18, the next iteration of UK
Climate Projections, based on the Research Concentration Pathways from AR5 (Met Office, 2018a). Equally, projections may be produced via
weather generator may be used directly; for example, the Vector-Autoregressive Weather Generator (Schlabing et al., 2014).

The UKCP09 identifies three major sources of uncertainties in their climate projections (Murphy et al., 2010): epistemic uncertainty (incomplete
understanding of climate system processes), internal climate variability, and scenario uncertainty. A summary of the controls introduced in UKCP09
to minimise this uncertainty is detailed in Table A2.
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Table A2
Sources of uncertainty in the UKCP09 weather generator climate projections and the controls in place to minimise this; based on Murphy et al. (2010).

Source Controls

Epistemic uncer-
tainty

A perturbed physics ensemble of the variance (Clark et al., 2016), e.g. different mathematical representation of the processes, interactions and feedbacks.

Variability Multiple runs with the same initial conditions for each ensemble.
Weather generator simulations based on statistical characteristics in the observed data. Simulations pick up more extreme climatic events (Schlabing et al.,
2014).

Scenario uncer-
tainty

There is a lack of agreement in how relative probability should be assigned to emissions scenario. To address this, UKCP09 presents three emissions scenarios:
low, medium and high.

Appendix B. Information theory

B.1 Model evaluation

Although the overall concept of information theoretics may be unknown to the reader, certain aspects should be familiar. Based on “deep
theoretical foundations” (Burnham and Anderson, 2001, p. 244), the concept and application are conspicuously simple. Candidate models are
evaluated over three steps: 1) measuring the information lost in each approximating model; 2) determination of the evidence in support of each
model; and 3) multi-model inference of a final model structure from the candidate set.

Step 1 Loss of information from model f

Kullback-Leibler (K-L) gives a measure of the amount of information that is lost when model g is used to approximate reality, f . A model which
loses the least information, i.e. has the most supporting evidence out of the candidates, can be considered the best approximation of reality.

The information loss I f g( , ) is determined through computation of information criteria (IC). A multitude of IC exist, some of which with the
reader is undoubtedly familiar. The Akaike Information Criterion (AIC) represents the standard estimate of Kullback-Leibler information (Burnham
and Anderson, 2002). In hydroecological modelling, the sample size, n, is often small relative to the number of variables, K . A second order bias
corrected version of AIC, AICc, can account for this through the addition of a second penalty (Burnham and Anderson, 2002):

AIC AIC K K
n K
2 ( 1)

1c = + +
(B1)

Step 2 Evidence in support of model gi

The value of AIC is dependent on the scale of the data, the goal is to achieve the smallest loss of information given the data. This difference is
rescaled and ranked relative to AICmin:

AIC AIC for i R1, 2, , .i ci c min= = … (B2)

The value of i may be interpreted through a rule of thumb (based on likelihood intervals): 2i < , there is substantial supporting evidence for
model gi; 4 7i , the models are not as competitive; and if 10i > it can be assumed that there is strong evidence against model gi (Burnham and
Anderson, 2002). From this measure of evidence, the likelihood that model gi is the best approximating model can be determined. This is known as
the Akaike weight, w, ranging from 1 to 0, for the most and least likely models respectively:
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The use of the Akaike weight allows for clearer inference when considering the candidate models.

Step 3 Multi-model inference

When using information theory model selection, the best approximating model is inferred across the entire candidate set. This is achieved
through consideration of a weighted combination of all candidates. Parameter averages, ˆ̄, are simply the sum of the Akaike weights for each model
that contains the predictor, ˆ:

ˆ w¯ ˆ
i

R

i i
1

=
= (B4)

As a result, the parameter averages are ranked, such that the highest value represents the most important in the model. This eliminates the
problem of multiple equally plausible models with different parameter structures (equifinality).

B.2 Application using glmulti

The package glmulti streamlines the above steps into a single function (Calcagno, 2013). The fundamentals of the algorithm and approach are
available in Calcagno and de Mazancourt (2010).
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A subset of models was determined using the function glmulti. The function was applied five times to ensure convergence to a consensus of model
subsets, with the function coef applied to determine the IT multi-model average. The number of indices is reduced by removing those indices where
both coefficient and standard error are zero and to within the 95% confidence interval, by ordering by descending importance: (importancei/
cumsum (importance)) < 0.95; this is illustrated in Table B1 overleaf.

Table B1
The structure of the hydroecological model prior to final removals (detailed above). Hydrological seasons are indicated by W (winter) and S (summer); the facets of
the flow regime are denoted as M (magnitude) and R (rate of change). The removed indices occupy the final five rows, reasons indicated in bold.

# Season Time-
offset

Index Facet Definition Coefficient Importance Unconditional
variance

Cumulative evidence
weight

0 – – intercept – – 7.64 1 2.36 0
1 W 0 10R90Log M Log ratio 10th/90th percentile flows. 0.07 0.86 0 0.27
2 W 0 riseMn R Mean rise rate in flow. 0.07 0.07 0.05 0.95
3 S 0 Q80Q50 M Q80 flows relative to median. 0.93 0.51 1.3 0.68
4 S 1 logQVar M Variance in log flows. −0.5 0.37 0.57 0.8
5 S 1 Q90Q50 M Q90 flows relative to median. 0.3 0.19 0.28 0.86
6 S 1 Q70Q50 M Q70 flows relative to median. 0.11 0.09 0.05 0.93
7 S 1 RevPos R Number days when flow is increasing (positive

reversals).
−0.04 0.8 0 0.52

– W 0 25R75Log M Log ratio 25th/75th percentile flows. 0 0.12 0 0.9
– W 0 20R80Log M Log ratio 20th/80th percentile flows. 0 0.05 0 0.97
– W 2 MaxQ50 M Maximum flow relative to median. 0 0.04 0 0.98
– W 2 MaxMonthlyMed M Median maximum flow relative to median flow

across all years.
0 0.03 0 1

– S 0 Q90Q50 M Q90 flows relative to median. 0.02 0.04 0.01 0.99

Appendix C. Case study

C.1 Hydroecological model – Index contribution

The contribution of each HI to hydroecological response was determined using the baseline data (1961–1990). Each of the 10,000 WG variants
and hydrological year were considered independently. For each of these iterations, the relative contribution of the HI was determined:

index value index coefficient
index value index coefficient (C1)

C.2 Hydroecological model – Validation with observed data

Data represents a key limiting factor to hydroecological modelling, with long-term (> 15–20 years) macroinvertebrate community data, at the
species level, uncommon (Monk et al., 2012); Consequently, the length of the time-series in hydroecological modelling is insufficient for split-
sampling (calibration and validation); this is commonplace in hydroecological modelling (Monk et al., 2012; Environment Agency, 2018).

The exploration of the model uncertainty serves as one approach to address the validation. Further validation is considered through comparison
of simulated species LIFE scores (1991–2017) to three data sources summarised in Table C1; see Figure C1 for validation. The following should be
considered when interpreting Figure C1:

• As discussed previously, LIFE score differences across taxonomic level are inevitable;
• Differences in LIFE scores of the same taxonomic level are due to known errors within the BIOSYS records; BIOSYS stat that corrections to address

these inconsistencies are in progress (Environment Agency, 2018);
• April 1995–September 1997 saw extremely low rainfall, leading to errors in the recording of low flows (NRFA, 2014). This discrepancy may be

the reason for the differences in observed and simulated values. It should be noted that the hydroecological model was not trained on data
marked as suspect; this data is included in Figure C1 to allow for the fitting of trendlines.

Table C1
Data sources considered for the additional validation of the hydroecological model. *Years of data excluding training data (1993–2012).

Raw MI data provided Taxonomic level Source of LIFE score Years

Yes Species This study 2013–2014*
Yes Family This study 1986–2014
No Family The Freshwater and Marine Biological Surveys England archive, known as BIOSYS (Environment Agency, 2018) 1991–2018
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Fig. C1. Comparison of LIFE scores across data sources (see Table C1). Trend lines are fitted for each data source (with the exception of species LIFE, 2013–2014
insufficient data).

The two dashed lines represent the comparison of the training data (light green) and model simulations (dark green); the similarity in the slope of
the lines indicates a high level of agreement in LIFE scores. Only two additional species LIFE scores are available (2013 and 2014; solid blue circles);
it can be seen that these values are consistent with the observed training data trendline (light green dashed line).

Two sources of observed family LIFE scores are available; see above for notes on differences between the data sources.
The slope of the trendline for family LIFE scores, determined as part of this study (solid blue line), is similar to the observed training data; the

underestimation of LIFE scores may be attributed to the difference in taxonomic level. For the EA BIOSYS data, a good level of agreement is again
indicated; though it can be seen that the validity of the model improves over time.

C.3 Hydrological model – Validation with observed data

Fig. C2. Validation of the hydrological model using observed data. (a) Comparison of the mean and 95% confidence interval (2 standard deviations). (b) Probability
density function of the relative error; a value of one indicates perfect agreement between model∼observations.
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C.4 Hydrological model – Validation with projections

Differences in the 95% CI for the index 10R90Log are the result of a single outlier observation during the 30-year time period (note that the other
two time periods are 4 and 7 years in length). It is also observed that the impact on hydroecological response reduces as 10R90Log increases to more
extreme values ( ± 10 specifically).

Table C2
Validation of the framework using the UKCP09 projections on the baseline.

Index Time period Lower quantile Median Upper quantile −95% CI +95% CI

10R90Log 1961–1990 −1.39 0.15 2.17 −96.58 96.88
10R90Log 1986–1990 −1.35 0.01 0.81 −27.83 27.86
10R90Log 2010–2017 −0.17 0.05 0.43 −19.47 19.58
RevPos 1961–1990 0.86 1 1.2 0.28 1.72
RevPos 1986–1990 0.82 0.9 1 0.65 1.15
RevPos 2010–2017 0.85 0.95 1.07 0.59 1.32
Q80Q50 1961–1990 0.9 1.01 1.13 0.65 1.37
Q80Q50 1986–1990 0.9 0.99 1.06 0.76 1.22
Q80Q50 2010–2017 0.98 1.05 1.13 0.78 1.32
logQVar 1961–1990 0.57 0.95 1.59 −1.28 3.17
logQVar 1986–1990 0.55 0.92 1.49 −0.75 2.58
logQVar 2010–2017 0.34 0.58 1.06 −1.24 2.41
Q90Q50 1961–1990 0.87 1.02 1.19 0.56 1.48
Q90Q50 1986–1990 0.86 0.98 1.08 0.67 1.28
Q90Q50 2010–2017 0.92 1.02 1.09 0.71 1.33
Q70Q50 1961–1990 0.92 1.01 1.1 0.71 1.3
Q70Q50 1986–1990 0.92 0.98 1.04 0.8 1.16
Q70Q50 2010–2017 0.96 1.02 1.13 0.76 1.28
riseMn 1961–1990 0.65 1.08 1.89 −1.36 3.53
riseMn 1986–1990 0.56 0.93 1.36 −0.38 2.24
riseMn 2010–2017 0.87 1.43 2.45 −1.79 4.66
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