50 research outputs found

    Longitudinal changes of SARA scale in Friedreich ataxia: Strong influence of baseline score and age at onset

    Get PDF
    BACKGROUND: The Scale for Assessment and Rating of Ataxia (SARA) is widely used in different types of ataxias and has been chosen as the primary outcome measure in the European natural history study for Friedreich ataxia (FA). METHODS: To assess distribution and longitudinal changes of SARA scores and its single items, we analyzed SARA scores of 502 patients with typical-onset FA (<25 years) participating in the 4-year prospective European FA Consortium for Translational Studies (EFACTS). Pattern of disease progression was determined using linear mixed-effects regression models. The chosen statistical model was re-fitted in order to estimate parameters and predict disease progression. Median time-to-change and rate of score progression were estimated using the Kaplan-Meier method and weighted linear regression models, respectively. RESULTS: SARA score at study enrollment and age at onset were the major predictive factors of total score progression during the 4-year follow-up. To a less extent, age at evaluation also influenced the speed of SARA progression, while disease duration did not improve the prediction of the statistical model. Temporal dynamics of total SARA and items showed a great variability in the speed of score increase during disease progression. Gait item had the highest annual progression rate, with median time for one-point score increase of 1 to 2 years. INTERPRETATION: Analyses of statistical properties of SARA suggest a variable sensitivity of the scale at different disease stages, and provide important information for population selection and result interpretation in future clinical trials

    Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients.

    Get PDF
    OBJECTIVE: To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS: Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS: Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION: This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263

    Postural Control Impairment in Parkinson's Disease. Contribution of saccades study, and involvement of the mesencephalic locomotor region

    No full text
    Les troubles du contrôle postural (TCP) sont une cause majeure d’invalidité dans la maladie de Parkinson (MP) au stade évolué et sont fréquemment associés aux RBD (REM sleep behavior disorders). Les substrats anatomiques des TCP sont mal connus. Ils reposent en partie sur des lésions de la région locomotrice mésencéphalique (noyau pédonculopontin-PPN et noyau cunéiforme), également impliquée dans le contrôle du sommeil/vigilance et oculomoteur. Les saccades oculaires sont un modèle de contrôle moteur dont la quantification est robuste et les réseaux largement élucidés. Dans la MP au stade évolué, il existe une altération des saccades volitionnelles qui pourrait être associée aux TCP. Des dysfonctions des sous-réseaux du PPN pourraient participer à la survenue des TCP, du sommeil/vigilance et oculomoteurs.Notre objectif est de préciser les corrélats physiologiques et anatomo-fonctionnels des TCP, et le substrat de l’association clinique entre TCP et RBD dans la MP. Nous confrontons l’étude de l’initiation du pas (ajustements posturaux anticipatoires-APA) et d’autres tests de marche-équilibre à l’étude des saccades, et analysons les réseaux locomoteurs, de vigilance et oculomoteurs du PPN en IRM fonctionnelle. Nous montrons pour la première fois que les patients avec instabilité posturale ont un allongement de la latence des antisaccades et de la durée des APA, inter-corrélés. La durée des APA est corrélée aux anomalies de connectivité fonctionnelle entre le PPN et la SMA/préSMA. La présence de RBD est sous-tendue par des anomalies du réseau PPN-cortex cingulaire antérieur. L’allongement de la latence des antisaccades est associé à une désorganisation du réseau PPN-FEF.Postural control (PC) impairment is a major cause of disability in Parkinson’s Disease (PD) and is frequently associated with RBD (REM-sleep behavior disorders-RBD). The networks underlying PC impairment in PD are not well known. They include lesions of the mesencephalic locomotor region (pedunculopontine nucleus-PPN, and cuneiform nucleus), which is also involved in the control of sleep/vigilance. Saccades are a model of motor control, their quantification is reliable and their networks have been largely elucidated. PD patients at evolved stages have predominant volitional saccades alterations which could be associated with some aspects of postural control disorders. Dysfunctions of specific PPN networks could be involved in PC impairment, sleep/vigilance and oculomotor disorders. Our goal is to specify the neurophysiological and anatomo-functional correlates of postural control impairment and to specify the substrates underlying the co-occurrence of postural control disorders and RBD in PD. We confront the study of gait initiation (anticipatory postural adjustments-APA) with the antisaccades paradigm, and we analyze the PPN functional locomotor, vigilance and oculomotor networks. We show for the first time that PD patients with postural instability have prolonged antisaccades latencies and APA duration, and that these disorders are intercorrelated. APA duration is correlated with PPN-SMA/préSMA functional connectivity abnormalities, the presence of RBD is associated with disruptions in the PPN-anterior cingular cortex network and prolonged antisaccade latencies are possibly underlined by PPN-FEF functional disorganization

    Troubles du contrôle postural dans la Maladie de Parkinson. Apport de l'étude des saccades oculaires et implication de la région locomotrice mésencéphalique, à l'interface entre contrôle moteur automatique, volontaire et vigilance

    No full text
    Postural control (PC) impairment is a major cause of disability in Parkinson’s Disease (PD) and is frequently associated with RBD (REM-sleep behavior disorders-RBD). The networks underlying PC impairment in PD are not well known. They include lesions of the mesencephalic locomotor region (pedunculopontine nucleus-PPN, and cuneiform nucleus), which is also involved in the control of sleep/vigilance. Saccades are a model of motor control, their quantification is reliable and their networks have been largely elucidated. PD patients at evolved stages have predominant volitional saccades alterations which could be associated with some aspects of postural control disorders. Dysfunctions of specific PPN networks could be involved in PC impairment, sleep/vigilance and oculomotor disorders. Our goal is to specify the neurophysiological and anatomo-functional correlates of postural control impairment and to specify the substrates underlying the co-occurrence of postural control disorders and RBD in PD. We confront the study of gait initiation (anticipatory postural adjustments-APA) with the antisaccades paradigm, and we analyze the PPN functional locomotor, vigilance and oculomotor networks. We show for the first time that PD patients with postural instability have prolonged antisaccades latencies and APA duration, and that these disorders are intercorrelated. APA duration is correlated with PPN-SMA/préSMA functional connectivity abnormalities, the presence of RBD is associated with disruptions in the PPN-anterior cingular cortex network and prolonged antisaccade latencies are possibly underlined by PPN-FEF functional disorganization.Les troubles du contrôle postural (TCP) sont une cause majeure d’invalidité dans la maladie de Parkinson (MP) au stade évolué et sont fréquemment associés aux RBD (REM sleep behavior disorders). Les substrats anatomiques des TCP sont mal connus. Ils reposent en partie sur des lésions de la région locomotrice mésencéphalique (noyau pédonculopontin-PPN et noyau cunéiforme), également impliquée dans le contrôle du sommeil/vigilance et oculomoteur. Les saccades oculaires sont un modèle de contrôle moteur dont la quantification est robuste et les réseaux largement élucidés. Dans la MP au stade évolué, il existe une altération des saccades volitionnelles qui pourrait être associée aux TCP. Des dysfonctions des sous-réseaux du PPN pourraient participer à la survenue des TCP, du sommeil/vigilance et oculomoteurs.Notre objectif est de préciser les corrélats physiologiques et anatomo-fonctionnels des TCP, et le substrat de l’association clinique entre TCP et RBD dans la MP. Nous confrontons l’étude de l’initiation du pas (ajustements posturaux anticipatoires-APA) et d’autres tests de marche-équilibre à l’étude des saccades, et analysons les réseaux locomoteurs, de vigilance et oculomoteurs du PPN en IRM fonctionnelle. Nous montrons pour la première fois que les patients avec instabilité posturale ont un allongement de la latence des antisaccades et de la durée des APA, inter-corrélés. La durée des APA est corrélée aux anomalies de connectivité fonctionnelle entre le PPN et la SMA/préSMA. La présence de RBD est sous-tendue par des anomalies du réseau PPN-cortex cingulaire antérieur. L’allongement de la latence des antisaccades est associé à une désorganisation du réseau PPN-FEF

    Oral mobility reflects rate of progression in advanced Friedreich’s ataxia

    No full text
    International audienceOur objective was to identify a sensitive marker of disease progression in Friedreich’s ataxia. We prospectively evaluated speech, voice, and oromotor function in 40 patients at two timepoints. The mean disease duration was 20.8 ± 9.8 years and mean SARA score 23.7 ± 8.6 at baseline. Oral motor mobility, assessed by a combination of movements of the face, eyes, cheeks, lips, and tongue, decreased significantly after 1 year (P < 0.0001). The standardized response mean over 12 months was considered as large for oral mobility (1.26) but small for SARA (0.12). Oral mobility could therefore be a sensitive marker in therapeutic trials

    Significance of NT-proBNP and High-Sensitivity Troponin in Friedreich Ataxia

    No full text
    International audienceackground: Friedreich's ataxia (FA) is a rare autosomal recessive mitochondrial disease resulting of a triplet repeat expansion guanine-adenine-adenine (GAA) in the frataxin (FXN) gene, exhibiting progressive cerebellar ataxia, diabetes and cardiomyopathy. We aimed to determine the relationship between cardiac biomarkers, serum N-terminal pro-brain natriuretic peptide (NT-proBNP), and serum cardiac high-sensitivity troponin (hsTnT) concentrations, and the extent of genetic abnormality and cardiac parameters.Methods: Between 2013 and 2015, 85 consecutive genetically confirmed FA adult patients were prospectively evaluated by measuring plasma hsTnT and NT-proBNP concentrations, electrocardiogram, and echocardiography.Results: The 85 FA patients (49% women) with a mean age of 39 ± 12 years, a mean disease onset of 17 ± 11 years had a mean SARA (Scale for the Assessment and Rating of Ataxia) score of 26 ± 10. The median hsTnT concentration was 10 ng/L (3 to 85 ng/L) and 34% had a significant elevated hsTnT ≥ 14 ng/L. Increased septal wall thickness was associated with increased hsTnT plasma levels (p < 0.001). The median NT-proBNP concentration was 31 ng/L (5 to 775 ng/L) and 14% had significant elevated NT-proBNP ≥ 125 ng/L. Markers of increased left ventricular filling pressure (trans mitral E/A and lateral E/E' ratio) were associated with increased NT-proBNP plasma levels (p = 0.01 and p = 0.01). Length of GAA or the SARA score were not associated with hsTnT or NT-proBNP plasma levels.Conclusion: hsTnT was increased in 1/3 of the adult FA and associated with increased septal wall thickness. Increased NT-proBNP remained a marker of increased left ventricular filling pressure. This could be used to identify patients that should undergo a closer cardiac surveillance

    SCA13 causes dominantly inherited non-progressive myoclonus ataxia

    No full text
    International audienceINTRODUCTION:Spinocerebellar ataxia 13 (SCA13) is a rare autosomal dominant cerebellar ataxia. To our knowledge, its association to movement disorders has never been described. We aimed at reporting 8 new SCA13 cases with a focus on movement disorders especially myoclonus.METHODS:We performed a detailed neurological examination and neurophysiological recording in 8 patients consecutively diagnosed with SCA13 between December 2013 and October 2015 and followed up in two French tertiary centers.RESULTS:We identified mild subcortical myoclonus in all patients, with a homogenous clinical and electrophysiological pattern. Myoclonus ataxia was very slowly progressive, like the other symptoms of the disease, whatever the age of onset. Patients with R423H mutation had an earlier age of onset than patients with R420H mutation.CONCLUSIONS:Myoclonus appears to be frequent in SCA13. SCA13 should be considered facing non-progressive autosomal dominant myoclonus ataxia, and polymyographic recording should be included in the diagnosis work

    Multimodal magnetic resonance imaging investigation of basal forebrain damage and cognitive deficits in Parkinson's disease

    No full text
    International audienceBACKGROUND: Cognitive deficits in Parkinson's disease (PD) may result from damage in the cortex as well as in the dopaminergic, noradrenergic, and cholinergic inputs to the cortex. Cholinergic inputs to the cortex mainly originate from the basal forebrain and are clustered in several regions, called Ch1 to Ch4, that project to the hippocampus (Ch1-2), the olfactory bulb (Ch3), and the cortex and amygdala (Ch4).OBJECTIVE: We investigated changes in basal forebrain and their role in cognitive deficits in PD.METHODS: We studied 52 nondemented patients with PD (Hoehn & Yahr 1-2) and 25 age-matched healthy controls using diffusion and resting state functional MRI.RESULTS: PD patients had a loss of structural integrity within the Ch1-2 and Ch3-4 nuclei of the basal forebrain as well as in the fornix. Tractography showed that the probability of anatomical connection was decreased in PD between Ch3-4 and the associative prefrontal cortex, occipital cortex, and peri-insular regions. There was a reduction in functional connectivity between Ch1-2 and the bilateral hippocampi and parahippocampal gyri, the left middle and superior temporal gyri, and the left fusiform gyrus and between Ch3-4 and the right inferior frontal gyrus and the right and left thalamus. In Ch1-2, loss of structural integrity and connectivity correlated with scores at the memory tests, whereas changes in Ch3-4 correlated with scores of global cognition and executive functions.CONCLUSION: This study highlights the association between deficits of different cholinergic nuclei of the basal forebrain and the extent of cognitive impairments in nondemented PD patients

    Characterizing cardiac phenotype in Friedreich's ataxia: The CARFA study

    No full text
    International audienceBackground: Friedreich's ataxia is an autosomal recessive mitochondrial disease caused by a triplet repeat expansion in the frataxin gene (FXN), exhibiting cerebellar sensory ataxia, diabetes and cardiomyopathy. Cardiac complications are the major cause of early death.Aims: To characterize the cardiac phenotype associated with Friedreich's ataxia, and to assess the evolution of the associated cardiopathy over 1 year.Methods: This observational single-centre open label study consisted of two groups: 20 subjects with Friedreich's ataxia and 20 healthy controls studied over two visits over 1 year. All subjects had transthoracic echocardiography, cardiac magnetic resonance imaging, cardiopulmonary exercise testing, quantification of serum cardiac biomarkers and neurological assessment.Results: Patients with Friedreich's ataxia had left ventricular hypertrophy, with significantly smaller left ventricular diastolic diameters and volumes and increased wall thicknesses. Cardiac magnetic resonance imaging demonstrated significant concentric left ventricular remodelling, according to the mass/volume ratio, and focal myocardial fibrosis in 50% of patients with Friedreich's ataxia. Cardiopulmonary exercise testing showed alteration of left ventricular diastolic filling in patients with Friedreich's ataxia, with an elevated VE/VCO2 slope (ventilatory flow/exhaled volume of carbon dioxide). High-sensitivity troponin T plasma concentrations were higher in subjects with Friedreich's ataxia. None of the previous variables changed at 1 year. Neurological assessments remained stable for both groups, except for the nine-hole pegboard test, which was altered over 1 year.Conclusions: The multivariable characterization of the cardiac phenotype of patients with Friedreich's ataxia was significantly different from controls at baseline. Over 1 year there were no clinically significant changes in patients with Friedreich's ataxia compared with healthy controls, whereas the neurological severity score increased modestly

    Interruption of deep brain stimulation of the globus pallidus in primary generalized dystonia

    No full text
    Stimulation (DBS) of the globus pallidus (GP) is effective to treat generalized dystonia. Little is known about the evolution of dystonia in case of arrest after a long period of stimulation. This study describes the course of dystonia during a 48 hours period without stimulation followed by a 24 hours period after turning ON the stimulator. 14 patients with generalized dystonia treated with bilateral GP DBS for 3 years or more were recruited. Blinded video-based analysis was performed using Burke-Fahn-Marsden scale at (1) baseline (ON stimulation), (2) up to 48 hours after the stimulator was turned OFF, and (3) 24 hours after the stimulator was turned ON. 13 patients completed the 48 hours OFF-stimulation period. The dystonia movement score progressively worsened from 24.3 +/- 13.9 at baseline to 48.9 +/- 19.8 after 48 hours (P < 0.00001). The disability score also worsened from 4.4 +/- 1.2 at baseline to 5.7 +/- 1.5 after 48 hours without stimulation (P < 0.001). When the neurostimulator was turned ON, the dystonia scores returned to baseline level after 10 hours. The interruption of GP DBS in dystonia results in a progressive worsening which is rapidly reversible once the neurostimulator is turned ON
    corecore