351 research outputs found
c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae.
Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization
Moisture transport by Atlantic tropical cyclones onto the North American continent
Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7 to 18 % (mean 14 %) of total net onshore flux to Atlantic TCs. A reduced contribution of 10 % (range 9 to 11 %) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further 8 % (range 6 to 9 % from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19 % (range 17 to 22 %) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Nino-Southern Oscillation phenomenon
Global Networks of Trade and Bits
Considerable efforts have been made in recent years to produce detailed
topologies of the Internet. Although Internet topology data have been brought
to the attention of a wide and somewhat diverse audience of scholars, so far
they have been overlooked by economists. In this paper, we suggest that such
data could be effectively treated as a proxy to characterize the size of the
"digital economy" at country level and outsourcing: thus, we analyse the
topological structure of the network of trade in digital services (trade in
bits) and compare it with that of the more traditional flow of manufactured
goods across countries. To perform meaningful comparisons across networks with
different characteristics, we define a stochastic benchmark for the number of
connections among each country-pair, based on hypergeometric distribution.
Original data are thus filtered by means of different thresholds, so that we
only focus on the strongest links, i.e., statistically significant links. We
find that trade in bits displays a sparser and less hierarchical network
structure, which is more similar to trade in high-skill manufactured goods than
total trade. Lastly, distance plays a more prominent role in shaping the
network of international trade in physical goods than trade in digital
services.Comment: 25 pages, 6 figure
Histopathological Changes and Clinical Responses of Buruli Ulcer Plaque Lesions during Chemotherapy: A Role for Surgical Removal of Necrotic Tissue?
The tropical necrotizing skin disease Buruli ulcer (BU) caused by Mycobacterium ulcerans is associated with extensive tissue destruction and local immunosuppression caused by the macrolide exotoxin mycolactone. Chemotherapy with a combination of rifampicin and streptomycin for 8 weeks is the currently recommended treatment for all types of BU lesions, including both ulcerative and non-ulcerative stages (plaques, nodules and edema). Our histopathological analysis of twelve BU plaque lesions revealed extensive destruction of sub-cutaneous tissue. This frequently led to ulceration during antibiotic treatment. This should not be mistaken as a failure of the antimycobacterial chemotherapy, since we found no evidence for the persistence of active infection foci. Large necrotic areas were found to persist even after completion of antibiotic treatment. These may disturb wound healing and the role of wound debridement should therefore be formally tested in a clinical trial setting
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
Hypothermia predicts mortality in critically ill elderly patients with sepsis
<p>Abstract</p> <p>Background</p> <p>Advanced age is one of the factors that increase mortality in intensive care. Sepsis and multi-organ failure are likely to further increase mortality in elderly patients.</p> <p>We compared the characteristics and outcomes of septic elderly patients (> 65 years) with younger patients (≤ 65 years) and identified factors during the first 24 hours of presentation that could predict mortality in elderly patients.</p> <p>Methods</p> <p>This study was conducted in a Level III intensive care unit with a case mix of medical and surgical patients excluding cardiac and neurosurgical patients.</p> <p>We performed a retrospective review of all septic patients admitted to our ICU between July 2004 and May 2007. In addition to demographics and co-morbidities, physiological and laboratory variables were analysed to identify early predictors of mortality in elderly patients with sepsis.</p> <p>Results</p> <p>Of 175 patients admitted with sepsis, 108 were older than 65 years. Elderly patients differed from younger patients with regard to sex, temperature (37.2°C VS 37.8°C p < 0.01), heart rate, systolic blood pressure, pH, HCO<sub>3</sub>, potassium, urea, creatinine, APACHE III and SAPS II. The ICU and hospital mortality was significantly higher in elderly patients (10.6% Vs 23.14% (p = 0.04) and 19.4 Vs 35.1 (p = 0.02) respectively). Elderly patients who died in hospital had a significant difference in pH, HCO<sub>3</sub>, mean blood pressure, potassium, albumin, organs failed, lactate, APACHE III and SAPS II compared to the elderly patients who survived while the mean age and co-morbidities were comparable. Logistic regression analysis identified temperature (OR [per degree centigrade decrease] 0.51; 95% CI 0.306- 0.854; p = 0.010) and SAPS II (OR [per point increase]: 1.12; 95% CI 1.016-1.235; p = 0.02) during the first 24 hours of admission to independently predict increased hospital mortality in elderly patients.</p> <p>Conclusions</p> <p>The mortality in elderly patients with sepsis is higher than the younger patients. Temperature (hypothermia) and SAPS II scores during the first 24 hours of presentation independently predict hospital mortality.</p
Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose-Efficacy Modeling.
BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study
Gene Conversion Transfers the GAF-A Domain of Phosphodiesterase TbrPDEB1 to One Allele of TbrPDEB2 of Trypanosoma brucei
Cyclic nucleotide specific phosphodiesterases are important regulators of cyclic nucleotide signalling in eukaryotes. In many organisms, including humans and trypanosomes, some of these enzymes contain specific domains (GAF domains) that bind cyclic nucleotides, and that are involved in the regulation of the catalytic domain. In the parasitic protozoon that causes human sleeping sickness, Trypanosoma brucei, two closely related phosphodiesterases each contain two such GAF domains, GAF-A and GAF-B. Their genes are tandemly located on chromosome 9, spaced by only a few thousand nucleotides. We here show that a gene conversion event has exchanged the region that codes for the GAF-A domain of the downstream gene by the closely similar corresponding sequence of the upstream gene. This domain exchange has no effect on intracellular localization of the two enzymes. The gene conversion event has occurred in one particular strain of trypanosomes (Lister427) and is found in all its derivatives, but not in any other strain or isolate. The presence or absence of this gene conversion represents a useful analytical marker for the stringent discrimination of Lister427 derivatives from other trypanosome strains
A Protein-Protein Interaction Map of the Trypanosoma brucei Paraflagellar Rod
We have conducted a protein interaction study of components within a specific sub-compartment of a eukaryotic flagellum. The trypanosome flagellum contains a para-crystalline extra-axonemal structure termed the paraflagellar rod (PFR) with around forty identified components. We have used a Gateway cloning approach coupled with yeast two-hybrid, RNAi and 2D DiGE to define a protein-protein interaction network taking place in this structure. We define two clusters of interactions; the first being characterised by two proteins with a shared domain which is not sufficient for maintaining the interaction. The other cohort is populated by eight proteins, a number of which possess a PFR domain and sub-populations of this network exhibit dependency relationships. Finally, we provide clues as to the structural organisation of the PFR at the molecular level. This multi-strand approach shows that protein interactome data can be generated for insoluble protein complexes
Systematic Deletion of Homeobox Genes in Podospora anserina Uncovers Their Roles in Shaping the Fruiting Body
Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures
- …