193 research outputs found

    Pseudo-outbreak of Mycobacterium gordonae in a teaching hospital: importance of strictly following decontamination procedures and emerging issues concerning sterilization

    Get PDF
    Aim of this study was to investigate a pseudo-outbreak of Mycobacterium gordonae analyzing isolates detected from clinical and environmental samples. Mycobacterium gordonae was detected in 7 out of 497 broncho-alveolar lavage (BAL) samples after bronchoscopy procedure in patients admitted to a teaching hospital between January and April 2013. During this pseudo-outbreak clinical, epidemiological, environmental and molecular investigations were performed. None of the patients met the criteria for non-tuberculous mycobacterial (NTM) lung disease and were treated for M. gordonae lung disease. Environmental investigation revealed M. gordonae in 3 samples: in tap water and in the water supply channel of the washer disinfector. All the isolates were subjected to genotyping by pulsed-field gel electrophoresis (PFGE). The PFGE revealed that only patients' isolates presented the same band pattern but no correlation with the environmental strain was detected. Surveillance of the outbreak and the strict adherence to the reprocessing procedure and its supplies resulted afterwards in no detection of M. gordonae in clinical respiratory samples. Clinical surveillance of patients was crucial to establish the start of NTM treatment. Regular screening of tap water and endoscopic equipment should be adopted to compare the clinical strains with the environmental ones when an outbreak occurs

    Analytical evaluation of QuantiFERON- Plus and QuantiFERON- Gold In-tube assays in subjects with or without tuberculosis

    Get PDF
    The QuantiFERON-TB Gold Plus (QFT-Plus) represents the new QuantiFERON-TB Gold In-tube (QFT-GIT) to identify latent tuberculosis infection (LTBI). The main differences is the addition of a new tube containing shorter peptides stimulating CD8 T-cells. Aim of this study is to evaluate the accuracy of QFT-Plus compared with QFT-GIT in a cross sectional study of individuals with or without tuberculosis (TB). We enrolled 179 participants: 19 healthy donors, 58 LTBI, 33 cured TB and 69 active TB. QFT-Plus and QFT-GIT were performed. The two tests showed a substantial agreement. Moreover we found a similar sensitivity in active TB and same specificity in healthy donors. A higher proportion of the LTBI subjects responded to both TB1 and TB2 compared to those with active TB (97% vs 81%). Moreover, a selective response to TB2 was associated with active TB (9%) and with a severe TB disease, suggesting that TB2 stimulation induces a CD8 T-cell response in absence of a CD4-response. In conclusion, QFT-Plus and QFT-GIT assays showed a substantial agreement and similar accuracy for active TB detection. Interestingly, a higher proportion of the LTBI subjects responded concomitantly to TB1 and TB2 compared to those with active TB, whereas a selective TB2 response associated with active TB

    First characterization of the CD4 and CD8 T-cell responses to QuantiFERON-TB Plus

    Get PDF
    Summary Introduction QuantiFERON ® -TB Gold Plus (QFT-Plus) is the new generation of QuantiFERON-TB Gold In-Tube test to identify latent tuberculosis infection (LTBI). QFT-Plus includes TB1 and TB2 tubes which contain selected Mycobacterium tuberculosis (Mtb) peptides designed to stimulate both CD4 and CD8 T-cells. Aim of this study is the flow cytometric characterization of the specific CD4 and CD8 T-cell responses to Mtb antigens contained within QFT-Plus. Methods We enrolled 27 active tuberculosis (TB) patients and 30 LTBI individuals. Following stimulation with TB1 and TB2, antigen-specific T-cells were characterized by flow cytometry. Data were also correlated with the grade of TB severity. Results TB1 mainly elicited a CD4 T-cell response while TB2 induced both CD4 and CD8 responses. Moreover, the TB2-specific CD4 response was detected for both active TB and LTBI patients, whereas the TB2-specific CD8 response was primarily associated with active TB (p = 0.01). Conclusions To our knowledge, we report the first characterization of the CD4 and CD8 T-cell response to QFT-Plus. CD8 T-cell response is mainly due to TB2 stimulation which is largely associated to active TB. These results provide a better knowledge on the use of this assay

    Antimicrobial susceptibility testing of mycobacterium tuberculosis complex isolates - the EUCAST broth microdilution reference method for MIC determination

    Get PDF
    Scope:Several methods are used worldwide for antibiotic susceptibility testing (AST) for theMycobac-terium tuberculosiscomplex (MTBC). The variability in the results obtained with these methods hamperssetting epidemiological cut-off (ECOFF) values and clinical breakpoints according to EUCAST guidelines.Methods for susceptibility testing and determination of the minimal inhibitory concentrations (MICs)need to be standardized for MTBC isolates for old and new agents. Our objective was to establish astandardized reference method for MIC determination for MTBC.Methods:The EUCAST antimycobacterial susceptibility testing subcommittee (AMST) compared pro-tocols of MIC determination with regard to medium, inoculum preparation, antituberculous agentpreparation, incubation, reading of the results and interpretation.Recommendations:The EUCAST reference method of MIC determination for MTBC is the broth micro-dilution method in Middlebrook 7H9-10% OADC medium. Thefinal inoculum is a 105CFU/mL suspension,obtained from a 10 2dilution of a 0.5 McFarland suspension prepared after vortexing bacterial colonieswith glass beads before suspending them in sterile water. The culture is maintained in a U-shaped 96-well polystyrene microtitre sterile plate with a lid incubated at 36 ±1 C. Reading is done using aninverted mirror as soon as the 1:100 diluted control (i.e. 103CFU/mL suspension) shows visual growth.The MIC, expressed in mg/L, is the lowest concentration that inhibits visual growth.MycobacteriumtuberculosisH37Rv ATCC 27294 is used as the reference strain and its targeted MIC values are within therange 0.03e0.12 for isoniazid, 0.12e0.5 for levofloxacin and 0.25e1 mg/L for amikacin.Conclusions:The EUCAST reference method for MTBC was endorsed by EUCAST after public consultationand will from now on be used to define EUCAST ECOFFs and clinical breakpoints. This reference methodis not primarily intended to be used under routine conditions and the AST methods will need to b

    Multicentre testing of the EUCAST broth microdilution reference method for MIC determination on mycobacterium tuberculosis

    Get PDF
    Objectives: the first objective of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) subcommittee for antimycobacterial susceptibility testing (AMST), launched in 2016, was to set a reference method for determining the MICs of antituberculous agents, since many protocols are used worldwide and a consensus one is needed for the determination of microbiological breakpoints. Methods: during 2017 and 2018, MIC determination protocols were evaluated prospectively in a multicentre study within the four AMST laboratories. MIC results were obtained for isoniazid, levofloxacin and amikacin on the reference strain Mycobacterium tuberculosis H37Rv ATCC 27294. Broth microdilution (BMD) in Middlebrook 7H9 and solid medium dilution (SMD) in Middlebrook 7H10 were performed using two inoculum concentrations. MICs were interpreted with regard to visual and 99% inhibition after 7, 14 or 21 days of incubation for BMD and 21 days for SMD. Results: following the EUCAST reference protocol, intra- and inter-assay agreements were within ±1 MIC dilution for >95% of the observations for the three drugs in both methods. MIC values, presented as MIC mode (range) for BMD and SMD respectively, were: 0.03 (0.015-0.06) mg/L and 0.12 (0.06-0.25) mg/L for isoniazid, 0.25 mg/L (0.25-0.5) and 0.5 mg/L (0.12-0.5) for levofloxacin, and 0.5 mg/L (0.5-1.0) and 0.5 mg/L (0.5-1.0) for amikacin. Conclusions: both SMD and BMD were reproducible and eligible as a reference method for MIC determination of the Mycobacterium tuberculosis complex (MTBC). BMD was finally selected as the EUCAST reference method. From now on it will be used to set epidemiological cut-off values and clinical breakpoints of new and old antituberculous agents

    MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates

    Get PDF
    Analyzing whole-genome sequencing data of Mycobacterium tuberculosis complex (MTBC) isolates in a standardized workflow enables both comprehensive antibiotic resistance profiling and outbreak surveillance with highest resolution up to the identification of recent transmission chains. Here, we present MTBseq, a bioinformatics pipeline for next-generation genome sequence data analysis of MTBC isolates. Employing a reference mapping based workflow, MTBseq reports detected variant positions annotated with known association to antibiotic resistance and performs a lineage classification based on phylogenetic single nucleotide polymorphisms (SNPs). When comparing multiple datasets, MTBseq provides a joint list of variants and a FASTA alignment of SNP positions for use in phylogenomic analysis, and identifies groups of related isolates. The pipeline is customizable, expandable and can be used on a desktop computer or laptop without any internet connection, ensuring mobile usage and data security. MTBseq and accompanying documentation is available from https://github.com/ngs-fzb/MTBseq_source

    Towards standardisation:comparison of five whole genome sequencing (WGS) analysis pipelines for detection of epidemiologically linked tuberculosis cases

    Get PDF
    BackgroundWhole genome sequencing (WGS) is a reliable tool for studying tuberculosis (TB) transmission. WGS data are usually processed by custom-built analysis pipelines with little standardisation between them.AimTo compare the impact of variability of several WGS analysis pipelines used internationally to detect epidemiologically linked TB cases.MethodsFrom the Netherlands, 535 Mycobacterium tuberculosis complex (MTBC) strains from 2016 were included. Epidemiological information obtained from municipal health services was available for all mycobacterial interspersed repeat unit-variable number of tandem repeat (MIRU-VNTR) clustered cases. WGS data was analysed using five different pipelines: one core genome multilocus sequence typing (cgMLST) approach and four single nucleotide polymorphism (SNP)-based pipelines developed in Oxford, United Kingdom; Borstel, Germany; Bilthoven, the Netherlands and Copenhagen, Denmark. WGS clusters were defined using a maximum pairwise distance of 12 SNPs/alleles.ResultsThe cgMLST approach and Oxford pipeline clustered all epidemiologically linked cases, however, in the other three SNP-based pipelines one epidemiological link was missed due to insufficient coverage. In general, the genetic distances varied between pipelines, reflecting different clustering rates: the cgMLST approach clustered 92 cases, followed by 84, 83, 83 and 82 cases in the SNP-based pipelines from Copenhagen, Oxford, Borstel and Bilthoven respectively.ConclusionConcordance in ruling out epidemiological links was high between pipelines, which is an important step in the international validation of WGS data analysis. To increase accuracy in identifying TB transmission clusters, standardisation of crucial WGS criteria and creation of a reference database of representative MTBC sequences would be advisable

    Bedaquiline and clofazimine resistance in Mycobacterium tuberculosis: an in-vitro and in-silico data analysis

    Get PDF
    Background: Bedaquiline is a core drug for the treatment of multidrug-resistant tuberculosis; however, the understanding of resistance mechanisms is poor, which is hampering rapid molecular diagnostics. Some bedaquiline-resistant mutants are also cross-resistant to clofazimine. To decipher bedaquiline and clofazimine resistance determinants, we combined experimental evolution, protein modelling, genome sequencing, and phenotypic data. Methods: For this in-vitro and in-silico data analysis, we used a novel in-vitro evolutionary model using subinhibitory drug concentrations to select bedaquiline-resistant and clofazimine-resistant mutants. We determined bedaquiline and clofazimine minimum inhibitory concentrations and did Illumina and PacBio sequencing to characterise selected mutants and establish a mutation catalogue. This catalogue also includes phenotypic and genotypic data of a global collection of more than 14 000 clinical Mycobacterium tuberculosis complex isolates, and publicly available data. We investigated variants implicated in bedaquiline resistance by protein modelling and dynamic simulations. Findings: We discerned 265 genomic variants implicated in bedaquiline resistance, with 250 (94%) variants affecting the transcriptional repressor (Rv0678) of the MmpS5–MmpL5 efflux system. We identified 40 new variants in vitro, and a new bedaquiline resistance mechanism caused by a large-scale genomic rearrangement. Additionally, we identified in vitro 15 (7%) of 208 mutations found in clinical bedaquiline-resistant isolates. From our in-vitro work, we detected 14 (16%) of 88 mutations so far identified as being associated with clofazimine resistance and also seen in clinically resistant strains, and catalogued 35 new mutations. Structural modelling of Rv0678 showed four major mechanisms of bedaquiline resistance: impaired DNA binding, reduction in protein stability, disruption of protein dimerisation, and alteration in affinity for its fatty acid ligand. Interpretation: Our findings advance the understanding of drug resistance mechanisms in M tuberculosis complex strains. We have established an extended mutation catalogue, comprising variants implicated in resistance and susceptibility to bedaquiline and clofazimine. Our data emphasise that genotypic testing can delineate clinical isolates with borderline phenotypes, which is essential for the design of effective treatments. Funding: Leibniz ScienceCampus Evolutionary Medicine of the Lung, Deutsche Forschungsgemeinschaft, Research Training Group 2501 TransEvo, Rhodes Trust, Stanford University Medical Scientist Training Program, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Bill & Melinda Gates Foundation, Wellcome Trust, and Marie Skłodowska-Curie Actions

    Tackling TB in migrants arriving at Europe's southern border.

    Get PDF
    Over a quarter of the individuals diagnosed with tuberculosis [TB] in the European Union region are born outside of the area and the proportion has been increasing steadily. Italy is a low TB incidence country with over 50% of TB cases in the foreign-born population primarily due to the high numbers of migrants entering the country via land or sea. As a case study to evaluate the value of screening in newly arrived migrants, the EDETECT-TB project in Italy implemented and evaluated active TB screening in the migrant population at first reception centres to ensure early diagnosis to avoid further spread. Based on a cost-effectiveness analysis from a program provider perspective, a decision tree model allowed the assessment of the value for money of case finding by estimating the cost per case of active TB detected compared with the status quo of no screening. The analysis confirmed that early case detection is a cost-effective intervention in areas with migrants arriving from high TB risk settings. Targeted post-arrival early screening of high TB risk vulnerable new entrants to Italy has a potential role in reducing the spread of TB among migrants

    Update on the diagnosis of tuberculosis

    Get PDF
    Background Tuberculosis remains a global public health threat, and the development of rapid and precise diagnostic tools is the key to enabling the early start of treatment, monitoring response to treatment, and preventing the spread of the disease. Objective An overview of recent progress in host- and pathogen-based tuberculosis diagnostics. Sources We conducted a PubMed search of recent relevant articles and guidelines on tuberculosis screening and diagnosis. Content An overview of currently used methods and perspectives in the following areas of tuberculosis diagnostics is provided: immune-based diagnostics, X-ray, clinical symptoms and scores, cough detection, culture of Mycobacterium tuberculosis and identifying its resistance profile using phenotypic and genotypic methods, including next generation sequencing, sputum- and non-sputum-based molecular diagnosis of tuberculosis and monitoring of response to treatment. Implications A brief overview of the most relevant advances and changes in international guidelines regarding screening and diagnosing tuberculosis is provided in this review. It aims at reviewing all relevant areas of diagnostics, including both pathogen- and host-based methods.PostprintPeer reviewe
    • …
    corecore