513 research outputs found

    A Cognitive Look at the "Invisibility" of Older Gay Men Within the Categories 'Gay Man' and 'Elderly Man'

    Get PDF
    Two studies analyzed whether, at the cognitive level, 'Elderly gay man' is "invisible" both when processing the labels 'Gay man' and 'Elderly man'. We suggest that 'Gay man' is conflated with 'Young man', and that 'Elderly man' is conflated with 'Heterosexual man'. Contact with elderly gay men did not alter the perception of 'Gay man' as prevalently young but weakened the perception of 'Elderly man' as heterosexual by default

    Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons

    Get PDF
    Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling

    Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1

    Get PDF
    The STAR family comprises ribonucleic acid (RNA)-binding proteins that play key roles in RNA-regulatory processes. RNA recognition is achieved by a KH domain with an additional α-helix (QUA2) that seems to extend the RNA-binding surface to six nucleotides for SF1 (Homo sapiens) and seven nucleotides for GLD-1 (Caenorhabditis elegans). To understand the structural basis of this probable difference in specificity, we determined the solution structure of GLD-1 KH-QUA2 with the complete consensus sequence identified in the tra-2 gene. Compared to SF1, the GLD-1 KH-QUA2 interface adopts a different conformation resulting indeed in an additional sequence-specific binding pocket for a uracil at the 5′end. The functional relevance of this binding pocket is emphasized by our bioinformatics analysis showing that GLD-1 binding sites with this 5′end uracil are more predictive for the functional response of the messenger RNAs to gld-1 knockout. We further reveal the importance of the KH-QUA2 interface in vitro and that its alteration in vivo affects the level of translational repression dependent on the sequence of the GLD-1 binding motif. In conclusion, we demonstrate that the QUA2 domain distinguishes GLD-1 from other members of the STAR family and contributes more generally to the modulation of RNA-binding affinity and specificity of KH domain containing protein

    Securin Is Not Required for Chromosomal Stability in Human Cells

    Get PDF
    Abnormalities of chromosome number are frequently observed in cancers. The mechanisms regulating chromosome segregation in human cells are therefore of great interest. Recently it has been reported that human cells without an hSecurin gene lose chromosomes at a high frequency. Here we show that, after hSecurin knockout through homologous recombination, chromosome losses are only a short, transient effect. After a few passages hSecurin(−/−) cells became chromosomally stable and executed mitoses normally. This was unexpected, as the securin loss resulted in a persisting reduction of the sister-separating protease separase and inefficient cleavage of the cohesin subunit Scc1. Our data demonstrate that securin is dispensable for chromosomal stability in human cells. We propose that human cells possess efficient mechanisms to compensate for the loss of genes involved in chromosome segregation

    Functional characterization of C. elegans Y-box-binding proteins reveals tissue-specific functions and a critical role in the formation of polysomes

    Get PDF
    The cold shock domain is one of the most highly conserved motifs between bacteria and higher eukaryotes. Y-box-binding proteins represent a subfamily of cold shock domain proteins with pleiotropic functions, ranging from transcription in the nucleus to translation in the cytoplasm. These proteins have been investigated in all major model organisms except Caenorhabditis elegans. In this study, we set out to fill this gap and present a functional characterization of CEYs, the C. elegans Y-box-binding proteins. We find that, similar to other organisms, CEYs are essential for proper gametogenesis. However, we also report a novel function of these proteins in the formation of large polysomes in the soma. In the absence of the somatic CEYs, polysomes are dramatically reduced with a simultaneous increase in monosomes and disomes, which, unexpectedly, has no obvious impact on animal biology. Because transcripts that are enriched in polysomes in wild-type animals tend to be less abundant in the absence of CEYs, our findings suggest that large polysomes might depend on transcript stabilization mediated by CEY protein

    Dissociation of Cohesin from Chromosome Arms and Loss of Arm Cohesion during Early Mitosis Depends on Phosphorylation of SA2

    Get PDF
    Cohesin is a protein complex that is required to hold sister chromatids together. Cleavage of the Scc1 subunit of cohesin by the protease separase releases the complex from chromosomes and thereby enables the separation of sister chromatids in anaphase. In vertebrate cells, the bulk of cohesin dissociates from chromosome arms already during prophase and prometaphase without cleavage of Scc1. Polo-like kinase 1 (Plk1) and Aurora-B are required for this dissociation process, and Plk1 can phosphorylate the cohesin subunits Scc1 and SA2 in vitro, consistent with the possibility that cohesin phosphorylation by Plk1 triggers the dissociation of cohesin from chromosome arms. However, this hypothesis has not been tested yet, and in budding yeast it has been found that phosphorylation of Scc1 by the Polo-like kinase Cdc5 enhances the cleavability of cohesin, but does not lead to separase-independent dissociation of cohesin from chromosomes. To address the functional significance of cohesin phosphorylation in human cells, we have searched for phosphorylation sites on all four subunits of cohesin by mass spectrometry. We have identified numerous mitosis-specific sites on Scc1 and SA2, mutated them, and expressed nonphosphorylatable forms of both proteins stably at physiological levels in human cells. The analysis of these cells lines, in conjunction with biochemical experiments in vitro, indicate that Scc1 phosphorylation is dispensable for cohesin dissociation from chromosomes in early mitosis but enhances the cleavability of Scc1 by separase. In contrast, our data reveal that phosphorylation of SA2 is essential for cohesin dissociation during prophase and prometaphase, but is not required for cohesin cleavage by separase. The similarity of the phenotype obtained after expression of nonphosphorylatable SA2 in human cells to that seen after the depletion of Plk1 suggests that SA2 is the critical target of Plk1 in the cohesin dissociation pathway
    corecore