11 research outputs found

    Biochemical Characterization of a <i>Pseudomonas aeruginosa</i> Phospholipase D

    No full text
    Phospholipase D is a ubiquitous protein in eukaryotes that hydrolyzes phospholipids to generate the signaling lipid phosphatidic acid (PtdOH). PldA, a <i>Pseudomonas aeruginosa</i> PLD, is a secreted protein that targets bacterial and eukaryotic cells. Here we have characterized the in vitro factors that modulate enzymatic activity of PldA, including divalent cations and phosphoinositides. We have identified several similarities between the eukaryotic-like PldA and the human PLD isoforms, as well as several properties in which the enzymes diverge. Notable differences include the substrate preference and transphosphatidylation efficiency for PldA. These findings offer new insights into potential regulatory mechanisms of PldA and its role in pathogenesis

    Discovery of Desketoraloxifene Analogues as Inhibitors of Mammalian, <i>Pseudomonas aeruginosa</i>, and NAPE Phospholipase D Enzymes

    No full text
    Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field
    corecore