16 research outputs found

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Hypomimia in Parkinson's Disease: What Is It Telling Us?

    No full text
    Introduction: Amimia is one of the most typical features of Parkinson's disease (PD). However, its significance and correlation with motor and nonmotor symptoms is unknown. The aim of this study is to evaluate the association between amimia and motor and nonmotor symptoms, including cognitive status, depression, and quality of life in PD patients. We also tested the blink rate as a potential tool for objectively measuring upper facial bradykinesia. Methods: We prospectively studied amimia in PD patients. Clinical evaluation was performed using the Unified Parkinson's Disease Rating Scale (UPDRS) and timed tests. Cognitive status, depression, and quality of life were assessed using the Parkinson's Disease Cognitive Rating Scale (PD-CRS), the 16-Item Quick Inventory of Depressive Symptomatology (QIDS-SR16), and the PDQ-39, respectively. Amimia was clinically evaluated according to item 19 of UPDRS III. Finally, we studied upper facial amimia by measuring resting blink frequency and blink rate during spontaneous conversation. Results: We included 75 patients. Amimia (item 19 UPDRS III) correlated with motor and total UPDRS (r: 0.529 and 0.551 Spearman), and its rigidity, distal bradykinesia, and motor axial subscores (r: 0.472; r: 0.252, and r: 0.508, respectively); Hoehn and Yahr scale (r: 0.392), timed tests, gait freezing, cognitive status (r: 0.29), and quality of life (r: 0.268) correlated with amimia. Blinking frequency correlated with amimia (measured with item 19 UPDRS), motor and total UPDRS. Conclusion: Amimia correlates with motor (especially axial symptoms) and cognitive situations in PD. Amimia could be a useful global marker of overall disease severity, including cognitive decline.Sin financiación4.086 JCR (2021) Q2, 88/212 Clinical Neurology1.027 SJR (2021) Q1, 92/378 Neurology (clinical)No data IDR 2020UE

    Deep Brain Stimulation for Pantothenate Kinase-Associated Neurodegeneration

    No full text
    Pantothenate kinase-associated neurodegeneration (PKAN) is usually associated with dystonia, which is typically severe and progressive over time. Pallidal stimulation (GPi DBS) has been carried out in selected cases of PKAN with drug-resistant dystonia with variable results. We report a 30-month follow-up study of a 30-year-old woman with PKAN-related dystonia treated with GPi DBS. Postoperatively, the benefit quickly became evident, as the patient exhibited a marked improvement in her dystonia, including her writing difficulty. This result has been maintained up to the present. GPi DBS should be considered in dystonic PKAN patients provided fixed contractures and/or pyramidal symptoms are not present

    Assessment of a SARS-CoV-2 wastewater monitoring program in El Paso, Texas, from November 2020 to June 2022

    No full text
    The border city of El Paso, Texas, and its water utility, El Paso Water, initiated a SARS-CoV-2 wastewater monitoring program to assess virus trends and the appropriateness of a wastewater monitoring program for the community. Nearly weekly sample collection at four wastewater treatment facilities (WWTFs), serving distinct regions of the city, was analyzed for SARS-CoV-2 genes using the CDC 2019-Novel coronavirus Real-Time RT-PCR diagnostic panel. Virus concentrations ranged from 86.7 to 268,000 gc/L, varying across time and at each WWTF. The lag time between virus concentrations in wastewater and reported COVID-19 case rates (per 100,00 population) ranged from 4–24 days for the four WWTFs, with the strongest trend occurring from November 2021 - June 2022. This study is an assessment of the utility of a geographically refined SARS-CoV-2 wastewater monitoring program to supplement public health efforts that will manage the virus as it becomes endemic in El Paso.</p

    The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population-Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight.

    No full text
    The Iberian Peninsula stands out as having variable levels of population admixture and isolation, making Spain an interesting setting for studying the genetic architecture of neurodegenerative diseases. To perform the largest PD genome-wide association study restricted to a single country. We performed a GWAS for both risk of PD and age at onset in 7,849 Spanish individuals. Further analyses included population-specific risk haplotype assessments, polygenic risk scoring through machine learning, Mendelian randomization of expression, and methylation data to gain insight into disease-associated loci, heritability estimates, genetic correlations, and burden analyses. We identified a novel population-specific genome-wide association study signal at PARK2 associated with age at onset, which was likely dependent on the c.155delA mutation. We replicated four genome-wide independent signals associated with PD risk, including SNCA, LRRK2, KANSL1/MAPT, and HLA-DQB1. A significant trend for smaller risk haplotypes at known loci was found compared to similar studies of non-Spanish origin. Seventeen PD-related genes showed functional consequence by two-sample Mendelian randomization in expression and methylation data sets. Long runs of homozygosity at 28 known genes/loci were found to be enriched in cases versus controls. Our data demonstrate the utility of the Spanish risk haplotype substructure for future fine-mapping efforts, showing how leveraging unique and diverse population histories can benefit genetic studies of complex diseases. The present study points to PARK2 as a major hallmark of PD etiology in Spain. © 2019 International Parkinson and Movement Disorder Society

    The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population-Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight

    No full text
    Background: The Iberian Peninsula stands out as having variable levels of population admixture and isolation, making Spain an interesting setting for studying the genetic architecture of neurodegenerative diseases. Objectives: To perform the largest PD genome-wide association study restricted to a single country. Methods: We performed a GWAS for both risk of PD and age at onset in 7,849 Spanish individuals. Further analyses included population-specific risk haplotype assessments, polygenic risk scoring through machine learning, Mendelian randomization of expression, and methylation data to gain insight into disease-associated loci, heritability estimates, genetic correlations, and burden analyses. Results: We identified a novel population-specific genome-wide association study signal at PARK2 associated with age at onset, which was likely dependent on the c.155delA mutation. We replicated four genome-wide independent signals associated with PD risk, including SNCA, LRRK2, KANSL1/MAPT, and HLA-DQB1. A significant trend for smaller risk haplotypes at known loci was found compared to similar studies of non-Spanish origin. Seventeen PD-related genes showed functional consequence by two-sample Mendelian randomization in expression and methylation data sets. Long runs of homozygosity at 28 known genes/loci were found to be enriched in cases versus controls. Conclusions: Our data demonstrate the utility of the Spanish risk haplotype substructure for future fine-mapping efforts, showing how leveraging unique and diverse population histories can benefit genetic studies of complex diseases. The present study points to PARK2 as a major hallmark of PD etiology in Spain.This research was supported, in part, by the Intramural Research Program of the National Institutes of Health (National Institute on Aging, National Institute of Neurological Disorders and Stroke; project numbers: 1ZIA‐NS003154‐03, Z01‐AG000949‐02, and Z01‐ES101986). In addition, this work was supported by the Department of Defense (award W81XWH‐09‐2‐0128), The Michael J Fox Foundation for Parkinson's Research, and the ISCIII Grants PI 15/0878 (Fondos Feder) to V.A. and PI 15/01013 to J,H. This study was supported by grants from the Spanish Ministry of Economy and Competitiveness (PI14/01823, PI16/01575, PI18/01898, [SAF2006‐10126 (2006‐2009), SAF2010‐22329‐C02‐01 (2010‐2012), and SAF2013‐47939‐R (2013‐2018)]), co‐founded by ISCIII (Subdirección General de Evaluación y Fomento de la Investigación) and by Fondo Europeo de Desarrollo Regional (FEDER), the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (CVI‐02526, CTS‐7685), the Consejería de Salud y Bienestar Social de la Junta de Andalucía (PI‐0437‐2012, PI‐0471‐2013), the Sociedad Andaluza de Neurología, the Jacques and Gloria Gossweiler Foundation, the Fundación Alicia Koplowitz, and the Fundación Mutua Madrileña. Pilar Gómez‐Garre was supported by the “Miguel Servet” (from ISCIII16 FEDER) and “Nicolás Monardes” (from Andalusian Ministry of Health) programmes. Silvia Jesús Maestre was supported by the “Juan Rodés” programme, and Daniel Macías‐García was supported by the “Río Hortega” programme (both from ISCIII‐FEDER). Cristina Tejera Parrado was supported by VPPI‐US from the Universidad de Sevilla. This research has been conducted using samples from the HUVR‐IBiS Biobank (Andalusian Public Health System Biobank and ISCIII‐Red de Biobancos PT13/0010/0056). This work was also supported by the grant PSI2014‐57643 from the Junta de Andalucía to the CTS‐438 group and a research award from the Andalusian Society of Neurology

    The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population‐Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight

    No full text
    The Iberian Peninsula stands out as having variable levels of population admixture and isolation, making Spain an interesting setting for studying the genetic architecture of neurodegenerative diseases. To perform the largest PD genome-wide association study restricted to a single country. We performed a GWAS for both risk of PD and age at onset in 7,849 Spanish individuals. Further analyses included population-specific risk haplotype assessments, polygenic risk scoring through machine learning, Mendelian randomization of expression, and methylation data to gain insight into disease-associated loci, heritability estimates, genetic correlations, and burden analyses. We identified a novel population-specific genome-wide association study signal at PARK2 associated with age at onset, which was likely dependent on the c.155delA mutation. We replicated four genome-wide independent signals associated with PD risk, including SNCA, LRRK2, KANSL1/MAPT, and HLA-DQB1. A significant trend for smaller risk haplotypes at known loci was found compared to similar studies of non-Spanish origin. Seventeen PD-related genes showed functional consequence by two-sample Mendelian randomization in expression and methylation data sets. Long runs of homozygosity at 28 known genes/loci were found to be enriched in cases versus controls. Our data demonstrate the utility of the Spanish risk haplotype substructure for future fine-mapping efforts, showing how leveraging unique and diverse population histories can benefit genetic studies of complex diseases. The present study points to PARK2 as a major hallmark of PD etiology in Spain. © 2019 International Parkinson and Movement Disorder Society
    corecore