180 research outputs found

    The response of the terrestrial biosphere to urbanization: land cover conversion, climate, and urban pollution

    No full text
    International audienceAlthough urban areas occupy a relatively small fraction of land, they produce major disturbances of the carbon cycle through land use change, climate modification, and atmospheric pollution. In this study we quantify effects of urban areas on the carbon cycle in Europe. Among urbanization-driven environmental changes, which influence carbon sequestration in the terrestrial biosphere, we account for: 1) proportion of land covered by impervious materials, 2) local urban meteorological conditions, 3) urban CO2-dome, and 4) elevated atmospheric nitrogen deposition. We use the terrestrial ecosystem model BIOME-BGC to estimate fluxes of carbon exchange between the biosphere and the atmosphere in response to these urban factors. We analysed these four urbanization-driven changes individually, setting up our model in such a way that only one of the four was active at a time. From these model simulations we found that fertilization effects from the CO2-dome and the atmospheric nitrogen deposition made the strongest positive contributions to the carbon uptake (0.023 Pg/year and 0.039 Pg/year, respectively), whereas, the impervious urban land and local urban meteorological conditions resulted in a reduction of carbon uptake (?0.006 Pg/year and ?0.007 Pg/year, respectively). The synergetic effect of the four urbanization-induced changes was an increase of the carbon sequestration in Europe of 0.056 Pg/year

    Urbanization impacts on the climate in Europe: Numerical experiments by the PSU-NCAR Mesoscale Model (MM5)

    Get PDF
    The objective of this study is to investigate the effects of urban land on the climate in Europe on local and regional scales. Effects of urban land cover on the climate are isolated using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) with a modified land surface scheme based on the Town Energy Budget model. Two model scenarios represent responses of climate to different states of urbanization in Europe: 1) no urban areas and 2) urban land in the actual state in the beginning of the twenty-first century. By comparing the simulations of these contrasting scenarios, spatial differences in near-surface temperature and precipitation are quantified. Simulated near-surface temperatures and an urban heat island for January and July over a period of 6 yr (2000-05) agree well with corresponding measurements at selected urban areas. The conversion of rural to urban land results in statistically significant changes to precipitation and near-surface temperature over areas of the land cover perturbations. The diurnal temperature range in urbanized regions was reduced on average by 1.26 degrees +/- 0.71 degrees C in summer and by 0.73 degrees +/- 00.54 degrees C in winter. Inclusion of urban areas results in an increase of urban precipitation in winter (0.09 +/- 00.16 mm day(-1)) and a precipitation reduction in summer (-0.05 +/- 0.22 mm day(-1)). [References: 49

    Bio-energy retains its mitigation potential under elevated CO2

    Get PDF
    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink

    Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amount of reactive nitrogen deposited on land has doubled globally and become at least five-times higher in Europe, Eastern United States, and South East Asia since 1860 mostly because of increases in fertilizer production and fossil fuel burning. Because vegetation growth in the Northern Hemisphere is typically nitrogen-limited, increased nitrogen deposition could have an attenuating effect on rising atmospheric CO<sub>2 </sub>by stimulating the vegetation productivity and accumulation of carbon in biomass.</p> <p>Results</p> <p>This study shows that elevated nitrogen deposition would not significantly enhance land carbon uptake unless we consider its effects on re-growing forests. Our results suggest that nitrogen enriched land ecosystems sequestered 0.62–2.33 PgC in the 1980s and 0.75–2.21 PgC in the 1990s depending on the proportion and age of re-growing forests. During these two decades land ecosystems are estimated to have absorbed 13–41% of carbon emitted by fossil fuel burning.</p> <p>Conclusion</p> <p>Although land ecosystems and especially forests with lifted nitrogen limitations have the potential to decelerate the rise of CO<sub>2 </sub>concentrations in the atmosphere, the effect is only significant over a limited period of time. The carbon uptake associated with forest re-growth and amplified by high nitrogen deposition will decrease as soon as the forests reach maturity. Therefore, assessments relying on carbon stored on land from enhanced atmospheric nitrogen deposition to balance fossil fuel emissions may be inaccurate.</p

    Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly in Europe using seven models

    Get PDF
    International audienceGlobally, the year 2003 is associated with one of the largest atmospheric CO2 rises on record. In the same year, Europe experienced an anomalously strong flux of CO2 from the land to the atmosphere associated with an exceptionally dry and hot summer in Western and Central Europe. In this study we analyze the magnitude of this carbon flux anomaly and key driving ecosystem processes using simulations of seven terrestrial ecosystem models of different complexity and types (process-oriented and diagnostic). We address the following questions: (1) how large were deviations in the net European carbon flux in 2003 relative to a short-term baseline (1998–2002) and to longer-term variations in annual fluxes (1980 to 2005), (2) which regions exhibited the largest shift in carbon fluxes during the growing season 2003, and (3) which processes controlled the carbon balance anomaly . In Western and Central Europe, the anomaly in net ecosystem productivity (NEP) over growing season 2003 was outside the 1s bound of the carbon flux anomalies for 1980–2005. The estimated growing season anomaly ranged between –29 and –196 Tg C for Western Europe and between 13 and –94 Tg C for Central Europe depending on the model used. All models responded to a dipole pattern of the climate anomaly in 2003. In Western and Central Europe NEP was reduced due to heat and drought. Over Western Russia NEP was decreased in response to lower than normal temperatures and high precipitation. While models agree on changes in simulated NEP and gross primary productivity anomalies in 2003 over Western and Central Europe, models diverge in the estimates of anomalies in ecosystem respiration. Except for two process models which simulate respiration increase, most models simulated a decrease in ecosystem respiration in 2003. The diagnostic models showed a weaker decrease in ecosystem respiration than the process-oriented models. Based on the multi-model simulations we estimated the total carbon flux anomaly over the 2003 growing season in Europe to range between –0.02 and –0.27 Pg C relative to the net flux in 1998–2002
    corecore