Effect of VOC emissions from vegetation on air quality in Berlin during a heat wave

Galina Churkina, Friderike Kuik, Boris Bonn, Axel Lauer, Rüdiger Grote, Karolina Tomiak, Tim Butler

Technical Support: Jörn Quedenau, Ciaron Linstead, WRF-Help

Synergistic interactions between urban heat islands and heat waves: the impact in cities is larger than the sum of its parts

2013: Li, D., Bou-Zeid, E., JAMC

PM -particulate matter

VOC -volatile organic compounds

Selected popular urban trees and their average **VOC emissions rates**

Churkina et al, ESP 2015

Temperature is an important driver of VOC emissions from vegetation

Guenther et al, JGR 1993

Objective

To estimate the effect of VOCs emitted from urban vegetation on the ground-level ozone and PM concentrations in summer and especially during heat wave period

Berlin is a green city

Heat Wave July 10-30 2006

Methods

- Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-Chem 3.7.1) and biogenic VOC emissions module (MEGAN 2.0)
- **Site observations** of temperature, wind, PBL, ozone, PM, NOx, VOCs (field campaign 2014)

Model Setup

• 3 domains:

– 15 km, 5 km, 1 km

- 35 eta levels up to 50 hPa
- Boundary conditions
 - ECMWF reanalysis data
- Anthropogenic emissions
 MACC
- Biogenic VOC emissions
 - MEGAN 2.04

Model Simulations: summers of 2006 & 2014

Abbreviation of	Anthropogenic	Biogenic	MEGAN
Model	Emissions	Emissions	Input Data
Simulation			
ANTH	included	none	none
ANTH+BIO	included	included	original
ANTH+BIOm	included	included	modified

Observed temperatures and ozone were ...

- well represented on average
- peaks were underestimated

2 m temepratures averaged over six measurement stations in Berlin-Brandenburg Metropolitan area in 2006

PM was greatly overestimated

Surface $PM_{2.5}$ average diurnal cycle (median) for Potsdam in summer 2014

Observed Isoprene

Isoprene Observed & Modeled

Urban background station in the center of Berlin

Contribution of VOCs from Vegetation to Ozone

 $Impact_{ozone} = \frac{OZONE_{ANTH+BIO} - OZONE_{ANTH}}{OZONE_{ANTH}} * 100\%$

Conclusions

- The contribution of VOC from vegetation to ozone levels in Berlin:
 - ~ 9-11 % on average in June and August
 - ~ 17-20% on average in July
 - ~ 60% during the heat wave
- WRF-Chem is not able to simulate PM and associated effect of BVOC on PM formation
- WRF-Chem has limited ability to simulate isoprene mixing ratios over urban forests
 - Mismatch between model and measurement spatial resolutions (1x1 km grid versus point)
 - Urban vegetation is poorly represented in MEGAN (leaf area index, emission factors)

More about vegetation and air quality in Berlin:

- Churkina G, Kuik F, Bonn B, Lauer A, Grote R, Tomiak K, Butler T, Effect of VOC emissions from vegetation on air quality in Berlin during a heatwave, Env. Sci. and Technology, in revision.
- Bonn B. et al, BAERLIN2014 The influence of land surface types on and the horizontal heterogeneity of air pollutant levels in Berlin. *Atmos. Chem. Phys. Discuss.* **2016**, *2016*, (16), 7785-7811.
- Kuik, F et al, Air quality modelling in the Berlin-Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data. *Geosci. Model Dev. Discuss.* **2016**, 1-46.