740 research outputs found
Capturing natural-colour 3D models of insects for species discovery
Collections of biological specimens are fundamental to scientific
understanding and characterization of natural diversity. This paper presents a
system for liberating useful information from physical collections by bringing
specimens into the digital domain so they can be more readily shared, analyzed,
annotated and compared. It focuses on insects and is strongly motivated by the
desire to accelerate and augment current practices in insect taxonomy which
predominantly use text, 2D diagrams and images to describe and characterize
species. While these traditional kinds of descriptions are informative and
useful, they cannot cover insect specimens "from all angles" and precious
specimens are still exchanged between researchers and collections for this
reason. Furthermore, insects can be complex in structure and pose many
challenges to computer vision systems. We present a new prototype for a
practical, cost-effective system of off-the-shelf components to acquire
natural-colour 3D models of insects from around 3mm to 30mm in length. Colour
images are captured from different angles and focal depths using a digital
single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images
are processed into 3D reconstructions using software based on a visual hull
algorithm. The resulting models are compact (around 10 megabytes), afford
excellent optical resolution, and can be readily embedded into documents and
web pages, as well as viewed on mobile devices. The system is portable, safe,
relatively affordable, and complements the sort of volumetric data that can be
acquired by computed tomography. This system provides a new way to augment the
description and documentation of insect species holotypes, reducing the need to
handle or ship specimens. It opens up new opportunities to collect data for
research, education, art, entertainment, biodiversity assessment and
biosecurity control.Comment: 24 pages, 17 figures, PLOS ONE journa
3D Scanning System for Automatic High-Resolution Plant Phenotyping
Thin leaves, fine stems, self-occlusion, non-rigid and slowly changing
structures make plants difficult for three-dimensional (3D) scanning and
reconstruction -- two critical steps in automated visual phenotyping. Many
current solutions such as laser scanning, structured light, and multiview
stereo can struggle to acquire usable 3D models because of limitations in
scanning resolution and calibration accuracy. In response, we have developed a
fast, low-cost, 3D scanning platform to image plants on a rotating stage with
two tilting DSLR cameras centred on the plant. This uses new methods of camera
calibration and background removal to achieve high-accuracy 3D reconstruction.
We assessed the system's accuracy using a 3D visual hull reconstruction
algorithm applied on 2 plastic models of dicotyledonous plants, 2 sorghum
plants and 2 wheat plants across different sets of tilt angles. Scan times
ranged from 3 minutes (to capture 72 images using 2 tilt angles), to 30 minutes
(to capture 360 images using 10 tilt angles). The leaf lengths, widths, areas
and perimeters of the plastic models were measured manually and compared to
measurements from the scanning system: results were within 3-4% of each other.
The 3D reconstructions obtained with the scanning system show excellent
geometric agreement with all six plant specimens, even plants with thin leaves
and fine stems.Comment: 8 papes, DICTA 201
Distinct mechanisms underlie pattern formation in the skin and skin appendages
Patterns form with the break of homogeneity and lead to the emergence of new structure or arrangement. There are different physiological and pathological mechanisms that lead to the formation of patterns. Here, we first introduce the basics of pattern formation and their possible biological basis. We then discuss different categories of skin patterns and their potential underlying molecular mechanisms. Some patterns, such as the lines of Blaschko and Naevus, are based on cell lineage and genetic mosaicism. Other patterns, such as regionally specific skin appendages, can be set by distinct combinatorial molecular codes, which in turn may be set by morphogenetic gradients. There are also some patterns, such as the arrangement of hair follicles (hair whorls) and fingerprints, which involve genetics as well as stochastic epigenetic events based on physiochemical principles. Many appendage primordia are laid out in developmental waves. In the adult, some patterns, such as those involving cycling hair follicles, may appear as traveling waves in mice. Since skin appendages can renew themselves in regeneration, their size and shape can still change in the adult via regulation by hormones and the environment. Some lesion patterns are based on pathological changes involving the above processes and can be used as diagnostic criteria in medicine. Understanding the different mechanisms that lead to patterns in the skin will help us appreciate their full significance in morphogenesis and medical research. Much remains to be learned about complex pattern formation, if we are to bridge the gap between molecular biology and organism phenotypes. Birth Defects Research (Part C) 78:280-291, 2006. © 2006 Wiley-Liss, Inc
Self-organizing & stochastic behaviors during the regeneration of hair stem cells
Stem cells cycle through active and quiescent states. Large populations of stem cells in an organ may cycle randomly or in a coordinated manner. Although stem cell cycling within single hair follicles has been studied, less is known about regenerative behavior in a hair follicle population. By combining predictive mathematical modeling with in vivo studies in mice and rabbits, we show that a follicle progresses through cycling stages by continuous integration of inputs from intrinsic follicular and extrinsic environmental signals based on universal patterning principles. Signaling from the WNT/bone morphogenetic protein activator/inhibitor pair is coopted to mediate interactions among follicles in the population. This regenerative strategy is robust and versatile because relative activator/inhibitor strengths can be modulated easily, adapting the organism to different physiological and evolutionary needs
Localization of tenascin in human skin wounds
A total of 56 surgically treated human skin wounds with a wound age between 8h and 7 months were investigated. Tenascin was visualized by immunohistochemistry and appeared first in the wound area pericellularly around fibroblastic cells approximately 2 days after wounding. A network-like interstitial positive staining pattern was first detectable in 3-day-old skin wounds. In all wounds with an age of 5 days or more, intensive reactivity for tenascin could be observed in the lesional area (dermal-epidermal junction, wound edge, areas of bleeding). In wounds with an age of more than approximately 1.5 months no positive staining occurred in the scar tissue. In conclusion, for forensic purposes, positive staining for tenascin restricted to the pericellular area of fibroblastic cells indicates a wound age of at least 2 days. Network-like structures appear after approximately 3 days or more. Since tenascin seems to be regularly detectable in skin wounds older than 5 days, the lack of a positive reaction in a sufficient number of specimens indicates a wound age of less than 5 days. The lack of a positive reaction in the granulation tissue of wounds with advanced wound age indicates a survival time of more than about 1.5 months, but a positive staining in older wounds cannot be excluded
Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy
Automated label-free quantitative imaging of biological samples can greatly
benefit high throughput diseases diagnosis. Digital holographic microscopy
(DHM) is a powerful quantitative label-free imaging tool that retrieves
structural details of cellular samples non-invasively. In off-axis DHM, a
proper spatial filtering window in Fourier space is crucial to the quality of
reconstructed phase image. Here we describe a region-recognition approach that
combines shape recognition with an iterative thresholding to extracts the
optimal shape of frequency components. The region recognition technique offers
fully automated adaptive filtering that can operate with a variety of samples
and imaging conditions. When imaging through optically scattering biological
hydrogel matrix, the technique surpasses previous histogram thresholding
techniques without requiring any manual intervention. Finally, we automate the
extraction of the statistical difference of optical height between malaria
parasite infected and uninfected red blood cells. The method described here
pave way to greater autonomy in automated DHM imaging for imaging live cell in
thick cell cultures
Carbon-based Materials for Extracting Urea to Recycle Waste Water in Space Applications
Recovering water aboard spacecrafts is essential for space exploration. Bringing fresh water to outer space for crew members is an expensive process. Therefore, recycling waste water to usable water is necessary for long term space missions and applications. Previous experiments showed that urea, which is the main substance in urine, prematurely fouled the membrane used in the water treatment process. In this experiment we investigated different carbon-based materials to act as a urea pre-treatment step. A total of nine different materials were tested for the amount of urea they can adsorb. The adsorption rate will enable us to decide which material is best for the pre-treatment process. Out of nine adsorbents, three had good adsorption rate with over 90% of urea is adsorbed
Diversification of the Caenorhabditis heat shock response by Helitron transposable elements.
Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple Caenorhabditis species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in C. elegans. Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in C. elegans and C. briggsae and by strain-specific insertions among different wild isolates of C. elegans. Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the Caenorhabditis HSR
- …