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Introduction

Thoracic malignancies, consisting predominantly of non-
small cell lung cancer (NSCLC) and small cell lung cancer 
(SCLC), have a predilection for distant metastasis and are 
associated with a poor prognosis (1). Similar outcomes are 
seen in other cancers of the thorax including malignant 
pleural mesothelioma (MPM) (2), advanced esophageal 
cancers (3),  advanced stage thymoma, and thymic  
carcinoma (4). Clearly, novel therapies are needed for these 
patients to improve tumor control and survival.

In recent years the benefit of immunotherapy, which 
harnesses the body’s ability to eliminate cancer cells, has 
emerged for some patients with thoracic malignancies. 
In fact, the influence of immunotherapy has been so 
profound that Science magazine named immunotherapy 
as the “Breakthrough of the Year” in 2013 (5), and 

it is now considered to be the fourth pillar of cancer  
care (6). The spotlight has focused especially on immune 
checkpoint inhibitors (ICIs) (7,8), although other types 
of immunotherapies including tumor vaccines and 
chimeric antigen receptor (CAR) T-cell therapy are also  
promising (9,10).

While immunotherapy alone has shown impressive 
results in patients with NSCLC beyond what is achievable 
with conventional therapies, the majority of patients 
will not achieve such responses. In fact, immunotherapy 
monotherapy is expected to result in significant benefits 
for only a subset of patients, especially those with high 
tumor mutational burden (11). Fortunately, emerging 
data demonstrate anti-tumor effects may increase with 
the use of immunotherapy in combinatorial regimens, 
including dual immune checkpoint blockade (12,13) as 
well as immunotherapy plus local tumor treatment such as 

Review Article 

Combining immunotherapy with radiation therapy in thoracic 
oncology

Shahed N. Badiyan1, Michael C. Roach2, Michael D. Chuong3, Stephanie R. Rice1, Nasarachi E. 
Onyeuku1, Jill Remick1, Srinivas Chilukuri4, Erica Glass1, Pranshu Mohindra1, Charles B. Simone II1

1University of Maryland School of Medicine, Baltimore, MD, USA; 2Washington University School of Medicine, St Louis, MO, USA; 3Miami 

Cancer Institute at Baptist Health South Florida, Miami, FL, USA; 4Apollo Proton Cancer Center, Chennai, India

Contributions: (I) Conception and design: All authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) 

Collection and assembly of data: All authors; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of 

manuscript: All authors.

Correspondence to: Shahed N. Badiyan, MD. University of Maryland School of Medicine, 850 W Baltimore St, Baltimore, MD 21201, USA. 

Email: shahedbadiyan@gmail.com.

Abstract:  Thoracic malignancies comprise some of the most common and deadly cancers. 
Immunotherapies have been proven to improve survival outcomes for patients with advanced non-
small cell lung cancer (NSCLC) and show great potential for patients with other thoracic malignancies. 
Radiation therapy (RT), an established and effective treatment for thoracic cancers, has acted synergistically 
with immunotherapies in preclinical studies. Ongoing clinical trials are exploring the clinical benefits of 
combining RT with immunotherapies and the optimal manner in which to deliver these complementary 
treatments.

Keywords: Radiation therapy (RT); immune checkpoint inhibitors (ICIs); immunotherapy; lung cancer; 

mesothelioma; esophageal cancer; thymoma

Submitted May 02, 2018. Accepted for publication May 08, 2018.

doi: 10.21037/jtd.2018.05.73

View this article at: http://dx.doi.org/10.21037/jtd.2018.05.73

2507



S2493Journal of Thoracic Disease, Vol 10, Suppl 21 August 2018

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(Suppl 21):S2492-S2507jtd.amegroups.com

radiation therapy (RT) (14).
While radiation has direct cytotoxic effects on cancer 

cells, it is well established that RT is capable of generating 
a robust anti-tumor immune response through effects on 
the tumor and the tumor microenvironment via a variety of 
mechanisms including enhanced tumor antigen presentation 
and upregulated major histocompatibility complex (MHC) 
class I expression (15). An abundance of preclinical studies 
demonstrates that radiation combined with checkpoint 
blockade results in a synergistic effect (16). While the 
optimal combination in cancer patients remains unclear, 
there are emerging clinical outcomes data suggesting that 
RT may, in fact, have systemic effects that go far beyond the 
locally irradiated target (17,18).

Herein, we review the preclinical data and clinical 
outcomes  that  support  the  use  of  rad ia t ion  and 
immunotherapy for patients with thoracic malignancies. We 
also discuss ongoing clinical trials that aim to further expand 
our understanding of how this treatment combination may 
further improve the therapeutic index for these patients.

Preclinical rationale for combining radiation 
with ICIs

The tissue microenvironment (TME) of the lung

The TME is a complex interplay of neutrophils, T-regulatory 
cells (Tregs), and myeloid-derived suppressor cells (MDSCs). 
There are pattern recognition receptors expressed by 
epithelial cells that can recognize and respond to pathogens 
through various pathways, as well as kill pathogens via 
these mechanisms (19,20). The ratio of specific subtypes of 
immune cells has been shown to be associated with survival 
in NSCLC, with inactivated mast cells, inactivated CD4+ 
memory T-cells, and naïve and memory B cells and plasma 
cells having favorable prognosis in adenocarcinomas; whereas 
higher abundance of myeloid populations and activated 
CD4+ memory T-cells are associated with poor prognosis 
in squamous cell carcinomas (21). Many studies evaluating 
various interactions of these immune cells have been 
performed, and overall the tumor assisted macrophages 
(TAMs), neutrophils, MDSCs, and Tregs all play a role in 
the TME, with increased T-cell infiltration into tumor, 
mature dendritic cells, and B cells correlating with favorable 
prognosis (22).

RT and immune cell response

RT has immunomodulation features within the lung 

parenchyma that can elicit contradictory host responses. RT 
can beneficially enhance recognition of tumor antigens by 
augmenting the immune system’s response to the tumor via 
increased MHC class 1 expression (23). RT has also been 
shown to increase levels of transforming growth factor-
beta (TGF-β), which can increase Treg representation 
after RT (24), resulting in a decrease in the response to 
therapy. RT also recruits MDSCs and macrophages, which 
in the presence of TGF-β can become M2 polarized and 
promote tumor growth, invasion and metastasis (25). 
Other preclinical work focusing on the immune response 
of varying RT fractionation schemes shows a difference in 
immune cell recruitment with fractionation, noting more 
CD8+ recruitment in higher dose-per-fraction (30 Gy in 1 
fraction) schemes compared to more MDSC recruitment 
with more fractionated approaches (3 Gy ×10 fractions)  
(26-28). As a result of the varying ways that RT can 
influence the immune system, clinical responses have been 
mixed.

Rationale for the combination of ICIs and RT 

The two most actively studied immune-checkpoint 
receptors are both inhibitory receptors: cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA-4) and 
programmed cell death protein 1 (PD-1). In general, 
inhibitory ligands and receptors that regulate T-cell effector 
functions are overexpressed on tumor cells, while co-
stimulatory receptors that regulate T-cell activation are not 
overexpressed (29). One of the most common mechanisms 
of immune checkpoint blockade is antibodies to the PD-1 
receptor. The role of PD-1 is to limit the activity of T-cells 
in peripheral tissues at the time of an inflammatory response 
to infection in order to minimize autoimmunity (30-36). 
However, in the TME, this process can result in effective 
immune resistance (37-39).

Inhibition of this checkpoint affects membrane proteins 
that are located on a range of cells including T-cells, B 
cells, natural killer (NK) cells, activated monocytes, and 
dendritic cells (36). Tumor cells frequently express the 
ligand programmed death-ligand 1 (PD-L1) on their 
surface, which when bound by PD-1, downregulate antigen 
receptor signaling resulting in decreased T-cell proliferation 
and cytokine production, limiting the activity of effector 
cells (40). Additionally, PD-1 has been found to be 
overstimulated and tumor-specific on T-cells (41). Increased 
expression of PD-L1 has been shown to result in lower 
numbers of tumor infiltrating lymphocytes (TILs) (42), and 
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higher expression of PD-L1 on tumor cells has been shown to 
correlate with better response to PD-1 antibody therapy (43).

The second most common checkpoint inhibitor is 
targeted to a receptor on T-cells known as CTLA-4, 
which has a high affinity for Tregs. Through its binding 
interaction with CD80 and CD86 (which limits binding 
of these to CD28) on antigen presenting cells (APCs), 
it both promotes Treg immunosuppressive function and 
sends inhibitory signaling to T-cells (29). With the greater 
affinity of binding of CTLA-4 to CD80 and CD86 over 
CD28, there is a negative feedback loop that leads to T-cell 
activation and increased CTLA-4 expression in order to 
prevent autoimmune reactions (44). Finally, murine models 
have demonstrated that the primary mode of action of anti-
CTLA-4 drugs is primarily by depleting Tregs via antibody-
dependent cell-mediated cytotoxicity (45).

Based on the promising preclinical data combining 
RT and immune checkpoint blockers for non-thoracic 
malignancies, a number of investigators have explored 
the efficacy of the combination in preclinical NSCLC 
models. An initial study of KRAS-mutant NSCLC showed 
improved survival and tumor shrinkage when combining 
RT and an anti-PD-1 antibody compared to either modality 
alone (46). Studies have indicated that this synergy may be 
the result of RT overcoming PD-1inhibitor resistance via 
induction of type I interferon (IFN) production leading to 
enhanced MHC class 1 expression (47). This combination 
may be promising for translation into the clinic for patients 
who initially become resistant to anti-PD-1 therapy as a 
way to increase responsiveness to therapy.

CTLA-4 blockade has also been studied in preclinical 
lung cancer mouse models in combination with RT (48). 
Yoshimoto et al. found that RT alone doubled median 
survival, and the addition of anti-CTLA-4 antibody 
increased the anti-tumor activity of RT by prolonging the 
tumor growth delay from 13.1 to 19.5 days. Another study 
combining RT with anti-CD25 therapy led to decreased 
Tregs in the spleen and the tumor when compared to 
monotherapy in an LL/C mouse model (49).

Preclinical studies have also demonstrated potential 
synergetic effects when combining RT with ICIs. PD-1 
blockade enhances T-cells, driving immune response and 
increasing effector cell activity, while CTLA-4 blockade 
depletes inhibitory Tregs (50). Additionally, RT alone can 
influence the immune system in a multitude of ways, some 
of which enhance tumor response while others render 
further RT less effective. However, the combination of RT 
and immune checkpoint blockade has the ability to enhance 

effects of either one of these therapies alone (and even 
overcome ineffectiveness of monotherapy), providing an 
exciting interdisciplinary approach to the management of 
NSCLC (51).

Preclinical rationale for combining radiation with 
immunotherapy beyond checkpoint inhibitors

Modulation of ICIs targeting receptors such as CTLA-4 
and PD-L1 is backed by compelling data as demonstrated 
in recent Checkmate trials (52,53). While promising, 
checkpoint inhibition as a treatment strategy benefits 
only a limited population of patients. Accordingly, other 
immunomodulatory techniques have been investigated 
including the use of T-cells that have been genetically 
modified to target cancer specific CARs.

Basic principles of CAR T-cell therapy

The ability to evade growth suppression and circumvent 
immunosurveillance is a distinct feature of cancer  
cells (54). This hallmark characteristic is mediated, in 
part, by the downregulation of the class 1 MHC proteins. 
The crux of CAR T-cell therapy is based on genetically 
engineering a T-cell with a CAR that can recognize 
cancer cells independent of MHC proteins. While the 
theory of T-cell mediated therapy is not new, advances in 
molecular synthesis have elevated this strategy as an exciting 
therapeutic option (55-58).

Constructing these modified T-cells requires attention 
to two major components: an intracellular transmembrane 
component and an extracellular, tumor-recognition 
component. The development of these genetically 
engineered T-cells has been characterized by increasingly 
complex co-stimulatory activation domains within the 
intracellular component to achieve a sustainable T-cell 
response. Specifically, the first generation of CAR T-cells 
contained a CD-3ζ containing domain, while additional 
domains including CD28, OX40 or 4-1BB now characterize 
the latest generation of CAR T-cells. Equally, the 
extracellular component must be designed for a specific 
target on cancer cells to maximize efficacy while minimizing 
the potential for “on target, off tumor” effects where non-
pathologic tissues are targeted (59).

Challenges to effective CAR T-cell therapy

The use of CAR T-cells in solid tumors presents the unique 
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challenge of effectively trafficking the genetically engineered 
T-cells to the target and propagating this response in a 
hostile tumor microenvironment. The mechanisms that 
govern the trafficking of native T-cells (adhesion, tethering, 
chemotaxis, and extravasation) are hindered at each phase 
by factors specific to the tumor microenvironment. For 
example, tumor-promoted angiogenesis yields vessels with 
endothelial cells lacking the necessary molecules for T-cells 
adherence (60). Furthermore, the physical barrier created 
by the rich stroma of solid tumors hampers the penetration 
and aggregation of engineered T-cells that lack the enzyme 
heparanase (61). Moreover, once T-cells have penetrated, 
molecular signaling in the tumor microenvironment is 
immunosuppressive and down regulates the recruitment 
and aggregation of additional T-cells (62-65).

Preclinical data supporting the use of RT with 
immunotherapy

Beyond the benefits of direct cytotoxicity, radiotherapy 
is associated with immunomodulatory effects that can 
be leveraged in combination with immunotherapy (66). 
Consequently, this also presents a greater opportunity for 
targeting specific tumor-associated antigens (23,64,67). 
Specific examples of radiotherapy-inducing tumor-
associated antigens were demonstrated in carcinoembryonic 
antigen (CEA)- and mesothelin-expressing tumors. 
Radiotherapy has been shown to upregulate the expression 
of the Fas gene in CEA-expressing tumor cells. Using 
a mouse model, Chakraborty et al. highlighted that 
radiotherapy enhanced Fas gene expression leading to 
improved antitumor activity in the setting of CEA-based 
vaccine therapy where T-cell killing proceeds through the 
Fas/FasL pathway (68). Mesothelin is a cell surface protein 
overexpressed in mesotheliomas, pancreatic, and ovarian 
tumors (69). Hassan et al. demonstrated the dose-dependent 
response of irradiated A4310K5 carcinoma cells resulting in 
elevated extracellular mesothelin expression and enhanced 
antitumor activity of an anti-mesothelin immunotoxin 
against mesothelin-expressing tumor xenografts. Additional 
examples of increased tumor associated antigens following 
radiotherapy include c-met and HER2 (70,71). Beyond 
enhancing tumor-associated antigens, radiotherapy also has 
been shown to address some of the barriers to effective T-cell 
therapy related to trafficking and chemotaxis (72-74).

Preclinical studies demonstrating the treatment 
synergy between CAR T-cell therapy and radiotherapy 
are encouraging (75,76). Radiotherapy appears to be a 

complimentary immunomodulator with the potential 
to help overcome many of the difficulties surrounding 
effective CAR T-cell therapy and function beyond its 
cytotoxic effects. While clinical outcomes of this approach 
are more limited than combining radiotherapy with ICIs, to 
further optimize the radiotherapy-CAR T cell combination 
approach, topics such as the timing of radiation relative to 
CAR T-cell therapy and the ideal dose and fractionation 
of radiotherapy will need to be addressed. CART T-cell 
therapy is currently under investigation for metastatic 
NSCLC in a phase II clinical trial at the National Institutes 
of Health (NCT02133196). The combination CAR T-cell 
therapy and radiation is likely to be explored in future 
clinical trials that promise to enhance our understanding of 
this treatment paradigm.

Radiation plus immunotherapy for metastatic 
NSCLC

More than half of patients with NSCLC present with distant 
metastases at the time of diagnosis (77). Unfortunately, 
long-term survival for patients with stage IV NSCLC is 
rare with 5-year overall survival (OS) less than 5% (77). For 
patients with stage IV NSCLC, RT has historically been 
used only for palliative purposes and has not been thought 
to improve survival over chemotherapy alone. However, 
two recent randomized clinical trials have demonstrated 
that in appropriately selected NSCLC patients with a low 
burden of metastatic disease to a limited number of distant 
sites (oligometastatic), RT can improve progression-free 
survival (PFS) and potentially OS (78,79). This revelation, 
along with the preclinical findings of the potential synergy 
of RT with immunotherapies has opened up an exciting 
new indication for RT in patients with metastatic NSCLC.

Platinum-based doublet chemotherapy has historically 
been the standard first-line systemic therapy regimen 
for patients with metastatic NSCLC without activating 
mutations in epidermal growth factor receptor (EGFR) 
or translocations in anaplastic lymphoma kinase (ALK) 
or ROS1 (80). Taxane-based regimens have historically 
been utilized as second-line regimens for patients that 
have progressive disease after receiving a platinum-based 
regimen (81). In 2015, results of the CheckMate 017 
trial revolutionized systemic therapy for NSCLC. That 
trial randomized patients with metastatic NSCLC who 
had progressed during or after first-line chemotherapy 
to docetaxel or the PD-1 inhibitor, nivolumab, found 
a significant improvement in median OS along with 
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significantly fewer serious treatment-related adverse events 
(AEs) in the nivolumab arm (52). Similarly, the nearly 
identical KEYNOTE-010 and POPLAR trials found 
significant improvements in OS and fewer serious AEs in 
patients receiving the PD-1 inhibitor pembrolizumab, or 
the PD-L1 inhibitor atezolizumab, respectively, in patients 
with metastatic NSCLC that had progressed during or 
after first-line chemotherapy (82,83). PD-L1 expression 
≥1% on tumor cells was required in the KEYNOTE-010 
trial. Based on the results of these ground-breaking clinical 
trials, the FDA approved nivolumab, pembrolizumab, 
and atezolizumab for second-line treatment of metastatic 
NSCLC.

Two recent clinical trials have demonstrated that ICIs 
are also effective as first-line therapy for select patients with 
metastatic NSCLC. The KEYNOTE-024 trial randomized 
patients with treatment-naïve metastatic NSCLC without 
sensitizing EGFR mutations or ALK rearrangements 
and with PD-L1 expression ≥50% to pembrolizumab or 
platinum-based chemotherapy. The investigators found 
that response rate and OS were significantly better in the 
pembrolizumab group compared to the chemotherapy 
group and fewer severe AEs occurred in the pembrolizumab 
group. Based on the results of this trial, the FDA approved 
pembrolizumab for first-line treatment of patients with 
metastatic NSCLC whose tumors express PD-L1 on 
≥50% of tumor cells (84). The KEYNOTE-189 trial 
randomized patients with treatment-naïve metastatic non-
squamous NSCLC without sensitizing EGFR mutations or 
ALK rearrangements regardless of PD-L1 expression to a 
platinum-based chemotherapy doublet with pembrolizumab 
or the same chemotherapy regimen plus placebo. Patients 
on the pembrolizumab arm had significantly higher OS and 
PFS regardless of PD-L1 expression levels, with similar 
rates of severe AEs (85).

The rapid adoption of ICIs for metastatic NSCLC 
and the frequent need for palliative RT for this patient 
population have resulted in a number of retrospective 
analyses reporting the safety and efficacy of combining ICIs 
with RT. Hubbeling et al. reported no significant difference 
in RT-related AEs in patients with metastatic NSCLC 
receiving cranial RT that previously or concurrently 
received PD-1/PD-L1 inhibitors compared to patients 
receiving cranial RT who were PD-1/PD-L1 inhibitor 
naïve (86). This and other early clinical data indicating that 
combining RT with ICIs may be safe, and the promising 
preclinical data demonstrating potential increased efficacy 
with the combination has led to at least 4 ongoing 

prospective clinical trials evaluating the safety and efficacy 
of the combination of RT and PD-1/PD-L1 inhibitors for 
metastatic NSCLC, and an additional 8 trials combining 
RT with other immunotherapy agents or combinations of 
ICIs (Table 1). Many studies are evaluating hypofractionated 
regimens, usually via stereotactic body radiation therapy 
(SBRT), rather than lower doses of RT typically used in 
the palliative setting, in hopes of eliciting greater antigen 
release in an attempt to improve the efficacy of the ICIs. 
The results of these clinical trials, expected in the next 
few years, will greatly enhance our understanding of the 
potential for RT to synergize with ICIs to provide clinically 
meaningful improvements in outcomes of patients with 
metastatic NSCLC.

Radiation plus immunotherapy locally advanced 
and early stage NSCLC

Locally advanced

Approximately one-quarter of patients with NSCLC 
present with locally advanced disease with regional lymph 
node involvement. For years, these patients have been 
primarily treated with concurrent platinum-based doublet 
chemotherapy and daily RT over 6 to 7 weeks. However, 
long-term disease control rates with this approach are 
limited. Two years after chemoradiation, nearly half of 
patients develop distant metastases, and only 30% will 
be alive without progressive disease (87). There were 
not any major advances in this approach for many years 
with randomized clinical trials of both induction (88) and 
maintenance chemotherapy (89) failing to consistently 
demonstrate improvements in OS. Dose escalation with 
conventional radiation even seems to decrease OS for 
patients with locally advanced disease (87).

While there have been other studies looking at vaccines 
as immunotherapy for patients with locally advanced 
NSCLC (10,90,91), START (Stimulating Targeted 
Antigenic Response To non-small-cell lung cancer) was 
the earliest randomized phase III clinical trial to add 
immunotherapy consolidation after chemoradiation for 
locally advanced NSCLC (9). It assessed the efficacy of 
tecemotide, a mucin 1 (MUC1) antigen-specific liposome 
vaccine injected subcutaneously. In earlier studies, it was 
capable of inducing a T-cell response in both mouse 
models and patients. A single-arm phase 2 trial after 
chemoradiation showed promising results (92). START 
enrolled 1,513 patients and randomized them in a 2:1 ratio 
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to immunotherapy consolidation versus placebo. This 
trial showed no significant difference in OS for all patients 
in the modified intention-to-treat population. However, 
in a subset analysis of patients who received concurrent 
chemoradiation therapy, median OS was 30.8 months with 
immunotherapy compared to 20.6 months with placebo 
(P=0.016). In those who received sequential chemotherapy 
and RT, however, there was no difference in OS (P=0.38). 
Importantly, this drug showed no increase in serious grade 
3 or 4 AEs (9).

In a s imilar study design to START, PACIFIC 
randomized patients to receive consolidation with the anti-
PD-L1 antibody durvalumab (at a dose of 10 mg given 
intravenously per kilogram of body weight) or placebo 
every 2 weeks until disease progression or 12 months, 
whichever occurred first (93). Durvalumab was given  
1–42 days after the conclusion of chemotherapy and RT. In 
a report from a planned interim analysis, the median PFS 
from randomization was 16.8 months with immunotherapy 
versus 5.6 months with placebo (HR 0.52, P<0.001). The 
other primary end-point, OS, has yet to be reported. 
Secondary end points of response rate, duration of response, 
and the median time to death or distant metastases were 
all better with durvalumab. Grade 3 or 4 AEs occurred in 
29.9% of patients receiving durvalumab and 26.1% of those 
receiving placebo. The most common grade 3 or 4 AE 
was pneumonia at 4.4% with durvalumab and 3.8% with 
placebo.

Adoption of consolidation with durvalumab has been 
mixed globally to date with many national health systems 
awaiting the OS results before considering it standard of 
care. The above PFS results, however, led to FDA approval 
of durvalumab in the United States, as well as incorporation 
as a standard of care in the National Comprehensive Cancer 
Network guidelines for patients with stage III disease, 
performance status 0–1, and no disease progression after 2 
or more cycles of definitive chemoradiation (94). European 
Society for Medical Oncology guidelines have not yet 
incorporated durvalumab into national guidelines. A health 
technology appraisal on this use of durvalumab is expected 
to be published in January 2019 by the National Institute 
for Health and Care Excellence in the United Kingdom.

There are other actively recruiting singe-arm trials that 
are exploring other immunotherapy agents (Table 1). MD 
Anderson Cancer Center is recruiting to DETERRED, 
a study exploring the safety of MDPL3280A, a PD-L1 
inhibitor, as part of consolidation therapy (NCT02525757). 
There are two studies ongoing that are moving PD-1 

inhibitors earlier in the treatment sequence at the same time 
as concurrent chemotherapy and RT. In a Rutgers Cancer 
Institute of New Jersey led multi-center trial, the safety 
of adding pembrolizumab to carboplatin and paclitaxel 
for patients with stage II–IIIB NSCLC (NCT02621398) 
is being tested. A similar phase II study by the European 
Thoracic Oncology Platform is evaluating pneumonitis 
rates with the addition of 4 doses of nivolumab given 
concurrently with standard concurrent chemotherapy 
(NCT02434081). Both radiation and immunotherapy can 
cause a similar presentation of pneumonitis, and to date, 
there are little prospective data on the potential synergistic 
toxicity of the combination. This combination is, therefore, 
being approached with caution.

Early stage

Patients with NSCLC without regional nodal spread can 
either undergo a resection or be treated with RT. SBRT has 
emerged over the past decade as an effective treatment with 
improved disease control and patient quality of life when 
compared to conventionally fractionated radiation (95). 
While primary tumor control is high with SBRT, systemic 
recurrence remains problematic, and the predominant 
method of failure. However, SBRT has been shown 
anecdotally to cause an abscopal effect in patients receiving 
immunotherapy for a variety of solid tumors, where after 
the administration of radiation to one location, there is a 
response in tumor(s) at distant sites. There is hope that this 
combination in early stage NSCLC can reduce the rate of 
nodal and distant recurrences. Trials are exploring whether 
the combination of SBRT with immunotherapy can be 
performed safely, as patients with early stage NSCLC have 
longer life expectancies and thus are at risk of developing 
long-term toxicities.

In the United States, there are at least four clinical trials 
assessing the efficacy and safety of ICIs after SBRT for 
early-stage NSCLC (Table 1). A multicenter phase I study 
of atezolizumab, an anti-PD-L1 monoclonal antibody, in 
combination with SBRT in high-risk early-stage NSCLC 
is recruiting (NCT02599454) in order to determine the 
maximum tolerated dose (MTD) of atezolizumab with 
SBRT. A similar phase I/II study is recruiting at the 
University of California, San Diego using the PD-L1 
monoclonal antibody, avelumab (NCT03050554), and 
two separate phase II are randomizing patients with early-
stage NSCLC to SBRT with or without durvalumab 
(NCT03148327)  or  nivolumab (NCT03110978) , 
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respectively.
In Europe, two trials will explore the tolerability 

of combining SBRT and PD-1 antibodies (Table 1). 
Tolerability is largely defined by the rate of grade 3 or 
greater pneumonitis. At VU University Medical Center in 
the Netherlands, patients with early stage node-negative 
NSCLC will be randomized to receive either SBRT alone 
or SBRT with 2 cycles of pembrolizumab followed by 
lobectomy (NCT03446911). If the rate of grade 3 or greater 
pneumonitis is ≤10%, the combination will be regarded as 
safe. In Great Britain, STILE (NCT03383302) is a single 
arm, multi-center phase II open-label study of nivolumab 
given within 24 hours of the final fraction of SBRT then 
every 2 weeks. If the rate of grade 3 or greater pneumonitis 
exceeds 20% in the first 6 months, the combination will be 
deemed unacceptable.

As these small studies attest, combining immunotherapy 
and RT for early-stage NSCLC is still in its infancy. 
Challenges with early-stage patients include appropriate 
selection of the patients that are most likely to benefit from 
combined modality treatment as well as optimal sequencing 
and duration of immunotherapy. The optimal radiation dose 
and fractionation for SBRT alone remain to be determined 
for peripheral and central tumors, much less when SBRT 
is combined with immunotherapy. Pseudoprogression after 
immunotherapy also will likely make assessing response 
only more challenging based on current RECIST size-based 
criteria. Nonetheless, there is promising potential synergy 
between radiation and immunotherapy to reduce systemic 
failures and improve cure rates in early stage patients (96).

Radiation plus immunotherapy for SCLC 

Despite a plethora of clinical trials for patients with SCLC 
over the last two decades, little progress has been made 
and patient outcomes remain poor, with OS ranging 
between 10 and 30 months depending on extent of disease. 
Although very responsive to first-line chemotherapy, SCLC 
frequently relapses, and response to second-line agents 
is extremely poor (97). Immunotherapy has thus been an 
exciting development for SCLC as it has the potential to 
overcome the limitations of chemotherapy by targeting 
SCLC in a novel way.

The advent of immunotherapy has spurred a search 
for biomarkers that can predict which patients may best 
respond to ICIs. PD-L1 expression, though helpful, has 
modest sensitivity and specificity (84). Numerous preclinical 
and clinical studies have demonstrated that tumors with 

a high mutagenic burden, and thus high expression of 
neoantigens, have high response rates to ICIs, irrespective 
of levels of PD-L1 tumor expression (11). SCLC has long 
been known to have a high tumor mutation burden (98). 
This has been found to be correlated with response to 
checkpoint inhibitors due to re-awakening of pre-existing 
strong anti-tumor CD8+ cytotoxic T-cell responses (98,99). 
There is also some pre-clinical and clinical evidence for 
an immunomodulatory effect of SCLC tumor cells on 
host immune system (100-102). The higher propensity of 
paraneoplastic syndromes in SCLC is also hypothesized to 
be evidence to suggest that several cross-reacting antibodies 
recruited by the host immune response target both tumor 
as well as normal cells. Apart from the immuno-stimulatory 
effects, there is evidence to suggest that SCLC tumor cells 
also exhibit a regulatory effect through induction of CD4+ 
Treg cells and decreased expression of HLA-class 1 antigen 
on host immunity. This balance between the effector and 
regulatory effects may distinguish extensive stage SCLC 
(ES-SCLC) from limited stage SCLC (LS-SCLC) (103).

Both single and combination immunotherapy regimens 
have been investigated in SCLC. The first agent evaluated 
in ES-SCLC was the CTLA-4 antibody ipilimumab. 
A number of studies, including a randomized phase III 
trial evaluating it in combination with chemotherapeutic 
agents in the first line setting, showed objective responses 
but failed to meet their primary survival endpoints (104). 
The KEYNOTE 028 study evaluated pembrolizumab 
in previously treated ES-SCLC patients. It showed an 
impressive response rate (RR) of 29% in unselected and 
33.3% in PD-L1 expression-positive patients. Responses 
were rapid and durable with a median duration of response 
of 19.4 months and OS of 9.7 months. It was tolerated well 
with an acceptable toxicity profile (105). The CheckMate 
032 trial, which compared the combination of nivolumab 
and ipilimumab with single-agent nivolumab as second-
line therapy for ES-SCLC patients, showed a RR of 
25%, compared to 11% with nivolumab alone and a near 
doubling of OS (7.9 vs. 4.1 months, respectively) at the 
expense of increased toxicity (106).

Although encouraging, priming with chemotherapy 
alone may generate only subpar neoantigen expression and 
a subsequent inadequate response. In this context, radiation 
may enhance tumor immunogenicity by modulating the 
immune response both at the systemic level and at the 
level of the tumor microenvironment. There are currently 
three trials evaluating the combination of radiation with 
ICIs (Table 1). Investigators at MD Anderson Cancer 
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Center are performing a phase-I dose escalation study of 
pembrolizumab in combination with carboplatin, etoposide, 
and RT in LS-SCLC and ES-SCLC (NCT02402920). 
In Europe, the ongoing phase II randomized multicenter 
STIMULI study is comparing standard chemoradiation 
and prophylactic cranial irradiation followed by either 
observation alone or 4 cycles of ipilimumab and nivolumab 
followed by maintenance nivolumab for patients with LS-
SCLC (NCT02046733). Finally, Emory University is 
conducting a randomized phase II study (NCT02701400) 
evaluating the combination of tremelimumab and 
durvalumab with or without hypofractionated RT or SBRT 
in patients with relapsed SCLC. These studies will address 
the toxicity concerns of combining these agents with 
radiation, especially in the context of the relatively large 
target volumes seen in SCLC as well as providing valuable 
data on the appropriate dose, combination, and timing of 
the treatments.

Radiation plus immunotherapy for mesothelioma

MPM is a rare disease with poor OS and limited effective 
treatment options. The development of metastatic disease 
is common, and there have not been significant strides 
in cytotoxic chemotherapies in recent years. Patients 
with MPM often have a large burden of disease and 
poor performance status, thus the discovery of effective 
immunotherapies has long been of interest. IL-2, IFN-alfa 
2a and IFN-alfa 2b have been evaluated with mixed results 
(107-109). A recent trial of chemotherapy and adenovirus 
containing IFN-alfa 2b in previously treated patients 
has resulted in an encouraging 21.5 months OS (109). 
Unfortunately, the CTLA-4 inhibitor tremelimumab failed 
to show an OS benefit in a recent phase III trial (110,111). 
Anti PD-1/PD-L1 drugs, however, have shown promising 
results in a series of small studies. Phase-I/II studies 
incorporating pembrolizumab, nivolumab, and avelumab 
have shown 9.4–20% partial response rates with stabilization 
of disease in 50% of patients (112-114). Combined PD-
L1 inhibition is also being explored in two ongoing clinical 
trials (NCT03048474 and NCT02899299). A report 
from the University of Toronto found that the growth of 
tumors in a murine mesothelioma model was significantly 
reduced by hypofractionated radiation and combining 
radiation with a CTLA-4 inhibitor enhanced the effect in 
the irradiated and unirradiated tumors (115). Combining 
radiotherapy and immunotherapy for mesothelioma is a 
promising treatment strategy (116), and clinical data for the 

combination of radiation and ICIs are forthcoming. A single 
arm phase II study has recently been initiated by Memorial 
Sloan Kettering Cancer Center and will evaluate response 
rates with Avelumab and SBRT in MPM (NCT03399552)  
(Table 1).

Radiation plus immunotherapy for esophageal 
cancer

Tr i m o d a l i t y  t h e r a p y  c o n s i s t i n g  o f  c o n c u r r e n t 
chemoradiation followed by surgical resection is the 
standard of care for locally advanced esophageal cancer 
patients who are surgical candidates. The 5-year OS with 
this approach ranges from 39–47% (117,118). In patients 
that are medically inoperable or have unresectable disease, 
definitive chemoradiation is recommended; however, 
survival rates are poor and persistence of locoregional 
disease occurs in nearly half of patients (119,120). More 
aggressive treatments such as radiation dose-escalation and 
the addition of targeted systemic agents against receptors 
commonly expressed in esophageal cancer such as EGFR 
have so far failed to improve patient outcomes (120,121).

PD-L1 expression is present in 45% of esophageal 
cancer tissues and is associated with more locally aggressive 
disease and decreased survival (122). Irradiated tumors 
have been associated with an increased expression of PD-
L1 leading to suppression of anti-tumoral activity of  
T-cells (16). Consequently, monoclonal antibodies directed 
against PD-L1 receptors may act synergistically with 
RT in killing tumor cells. This is the subject of several 
ongoing phase I–II trials evaluating safety and efficacy of 
the combination of chemoradiation with ICIs in both the 
metastatic/inoperable (NCT03377400, NCT03437200, 
NCT02642809) and neoadjuvant settings (NCT02735239) 
(Table 1).

Radiation plus immunotherapy for thymoma

Thymomas represent 20% of all primary mediastinal 
tumors (123). Surgical resection is the primary treatment. 
Postoperative radiation is recommended in the presence 
of positive margins and for advanced stages (4). While 
survival outcomes are generally good, intrathoracic failures 
after definitive treatment for thymoma can occur in 
approximately up to one-quarter of patients (124). Due to 
its rarity, there is a dearth of understanding of the molecular 
biology of these tumors, and immunotherapy approaches 
are limited to small patient cohorts. There are some studies 
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suggesting PD-L1 expression has higher prevalence in 
more aggressive histologies (i.e., B1-3 thymomas and 
thymic carcinomas) and in higher Masaoka stages (125,126). 
Avelumab was evaluated in 7 patients with locally advanced 
thymoma and a partial response was observed in 4 of 
these patients (127). There are two ongoing phase II trials 
evaluating the efficacy of ICIs in thymomas (NCT02721732 
and NCT02607631); however, none currently are in 
combination with radiation. The efficacy of immunotherapy 
combined with radiation will likely be of greater interest 
as our understanding of thymoma tumor biology and its 
interaction with the immune system improves.

Conclusions

The combination of immunotherapy and RT has the 
potential to revolutionize treatments for thoracic 
malignancies. Preclinical data have demonstrated impressive 
synergy between the two therapies that appears to extend 
beyond the irradiated target. For patients with advanced 
NSCLC, recent clinical trials incorporating ICIs have 
exhibited dramatic improvements in outcomes compared 
to conventional chemotherapies. We anxiously await results 
from ongoing and future preclinical research and clinical 
trials to better define the optimal approaches to combining 
these two pillars of cancer care.
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