4 research outputs found
A High-Accuracy Detection System: Based on Transfer Learning for Apical Lesions on Periapical Radiograph
Apical Lesions, one of the most common oral diseases, can be effectively detected in daily dental examinations by a periapical radiograph (PA). In the current popular endodontic treatment, most dentists spend a lot of time manually marking the lesion area. In order to reduce the burden on dentists, this paper proposes a convolutional neural network (CNN)-based regional analysis model for spical lesions for periapical radiographs. In this study, the database was provided by dentists with more than three years of practical experience, meeting the criteria for clinical practical application. The contributions of this work are (1) an advanced adaptive threshold preprocessing technique for image segmentation, which can achieve an accuracy rate of more than 96%; (2) a better and more intuitive apical lesions symptom enhancement technique; and (3) a model for apical lesions detection with an accuracy as high as 96.21%. Compared with existing state-of-the-art technology, the proposed model has improved the accuracy by more than 5%. The proposed model has successfully improved the automatic diagnosis of apical lesions. With the help of automation, dentists can focus more on technical and medical diagnoses, such as treatment, tooth cleaning, or medical communication. This proposal has been certified by the Institutional Review Board (IRB) with the certification number 202002030B0
Classification of the Relative Position between the Third Molar and the Inferior Alveolar Nerve Using a Convolutional Neural Network Based on Transfer Learning
In recent years, there has been a significant increase in collaboration between medical imaging and artificial intelligence technology. The use of automated techniques for detecting medical symptoms has become increasingly prevalent. However, there has been a lack of research on the relationship between impacted teeth and the inferior alveolar nerve (IAN) in DPR images. The severe compression of teeth against the IAN may necessitate the requirement for nerve canal treatment. To reduce the occurrence of such events, this study aims to develop an auxiliary detection system capable of precisely locating the relative positions of the IAN and impacted teeth through object detection and image enhancement. This system is designed to shorten the duration of examinations for dentists while concurrently mitigating the chances of diagnostic errors. The innovations in this research are as follows: (1) using YOLO_v4 to identify impacted teeth and the IAN in DPR images achieves an accuracy of 88%. However, the developed algorithm in this study achieves an accuracy of 93%. (2) Image enhancement is utilized in this study to expand the dataset, with an accuracy of up to 2~3% enhancement in detecting diseases. (3) The segmentation technique proposed in this study surpasses previous methods by achieving 6% higher accuracy in dental diagnosis