1,217 research outputs found

    Physicochemical properties of the alligator lizard tectorial membrane

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 44-46).by Henry E. Chung.M.Eng

    A Terminal Velocity on the Landscape: Particle Production near Extra Species Loci in Higher Dimensions

    Full text link
    We investigate particle production near extra species loci (ESL) in a higher dimensional field space and derive a speed limit in moduli space at weak coupling. This terminal velocity is set by the characteristic ESL-separation and the coupling of the extra degrees of freedom to the moduli, but it is independent of the moduli's potential if the dimensionality of the field space is considerably larger than the dimensionality of the loci, D >> d. Once the terminal velocity is approached, particles are produced at a plethora of nearby ESLs, preventing a further increase in speed via their backreaction. It is possible to drive inflation at the terminal velocity, providing a generalization of trapped inflation with attractive features: we find that more than sixty e-folds of inflation for sub-Planckian excursions in field space are possible if ESLs are ubiquitous, without fine tuning of initial conditions and less tuned potentials. We construct a simple, observationally viable model with a slightly red scalar power-spectrum and suppressed gravitational waves; we comment on the presence of additional observational signatures originating from IR-cascading and individual massive particles. We also show that moduli-trapping at an ESL is suppressed for D >> d, hindering dynamical selection of high-symmetry vacua on the landscape based on this mechanism.Comment: 46 pages, 6 figures. V3: typos corrected compared to JHEP version, conclusions unchange

    Pain and analgesic use associated with skeletal-related events in patients with advanced cancer and bone metastases

    Get PDF
    PURPOSE: Bone metastases secondary to solid tumors increase the risk of skeletal-related events (SREs), including the occurrence of pathological fracture (PF), radiation to bone (RB), surgery to bone (SB), and spinal cord compression (SCC). The aim of this study was to evaluate the impact of SREs on patients' pain, analgesic use, and pain interference with daily functioning. METHODS: Data were combined from patients with solid tumors and bone metastases who received denosumab or zoledronic acid across three identically designed phase 3 trials (N = 5543). Pain severity (worst pain) and pain interference were assessed using the Brief Pain Inventory at baseline and each monthly visit. Analgesic use was quantified using the Analgesic Quantification Algorithm. RESULTS: The proportion of patients with moderate/severe pain and strong opioid use generally increased in the 6 months preceding an SRE and remained elevated, while they remained relatively consistent over time in patients without an SRE. Regression analysis indicated that all SRE types were significantly associated with an increased risk of progression to moderate/severe pain and strong opioid use. PF, RB, and SCC were associated with significantly greater risk of pain interference overall. Results were similar for pain interference with emotional well-being. All SRE types were associated with significantly greater risk of pain interference with physical function. CONCLUSIONS: SREs are associated with increased pain and analgesic use in patients with bone metastases. Treatments that prevent SREs may decrease pain and the need for opioid analgesics and reduce the impact of pain on daily functioning

    Pain and analgesic use associated with skeletal-related events in patients with advanced cancer and bone metastases

    Get PDF
    PURPOSE: Bone metastases secondary to solid tumors increase the risk of skeletal-related events (SREs), including the occurrence of pathological fracture (PF), radiation to bone (RB), surgery to bone (SB), and spinal cord compression (SCC). The aim of this study was to evaluate the impact of SREs on patients' pain, analgesic use, and pain interference with daily functioning. METHODS: Data were combined from patients with solid tumors and bone metastases who received denosumab or zoledronic acid across three identically designed phase 3 trials (N = 5543). Pain severity (worst pain) and pain interference were assessed using the Brief Pain Inventory at baseline and each monthly visit. Analgesic use was quantified using the Analgesic Quantification Algorithm. RESULTS: The proportion of patients with moderate/severe pain and strong opioid use generally increased in the 6 months preceding an SRE and remained elevated, while they remained relatively consistent over time in patients without an SRE. Regression analysis indicated that all SRE types were significantly associated with an increased risk of progression to moderate/severe pain and strong opioid use. PF, RB, and SCC were associated with significantly greater risk of pain interference overall. Results were similar for pain interference with emotional well-being. All SRE types were associated with significantly greater risk of pain interference with physical function. CONCLUSIONS: SREs are associated with increased pain and analgesic use in patients with bone metastases. Treatments that prevent SREs may decrease pain and the need for opioid analgesics and reduce the impact of pain on daily functioning

    Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration

    Get PDF
    Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor

    Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents

    Get PDF
    Bone metastases in advanced cancer frequently cause painful complications that impair patient physical activity and negatively affect quality of life. Pain is often underreported and poorly managed in these patients. The most commonly used pain assessment instruments are visual analogue scales, a single-item measure, and the Brief Pain Inventory Questionnaire-Short Form. The World Health Organization analgesic ladder and the Analgesic Quantification Algorithm are used to evaluate analgesic use. Bone-targeting agents, such as denosumab or bisphosphonates, prevent skeletal complications (i.e., radiation to bone, pathologic fractures, surgery to bone, and spinal cord compression) and can also improve pain outcomes in patients with metastatic bone disease. We have reviewed pain outcomes and analgesic use and reported pain data from an integrated analysis of randomized controlled studies of denosumab versus the bisphosphonate zoledronic acid (ZA) in patients with bone metastases from advanced solid tumors. Intravenous bisphosphonates improved pain outcomes in patients with bone metastases from solid tumors. Compared with ZA, denosumab further prevented pain worsening and delayed the need for treatment with strong opioids. In patients with no or mild pain at baseline, denosumab reduced the risk of increasing pain severity and delayed pain worsening along with the time to increased pain interference compared with ZA, suggesting that use of denosumab (with appropriate calcium and vitamin D supplementation) before patients develop bone pain may improve outcomes. These data also support the use of validated pain assessments to optimize treatment and reduce the burden of pain associated with metastatic bone disease

    Why We Are Losing the War Against COVID-19 on the Data Front and How to Reverse the Situation.

    Get PDF
    With over 117 million COVID-19-positive cases declared and the death count approaching 3 million, we would expect that the highly digitalized health systems of high-income countries would have collected, processed, and analyzed large quantities of clinical data from patients with COVID-19. Those data should have served to answer important clinical questions such as: what are the risk factors for becoming infected? What are good clinical variables to predict prognosis? What kinds of patients are more likely to survive mechanical ventilation? Are there clinical subphenotypes of the disease? All these, and many more, are crucial questions to improve our clinical strategies against the epidemic and save as many lives as possible. One might assume that in the era of big data and machine learning, there would be an army of scientists crunching petabytes of clinical data to answer these questions. However, nothing could be further from the truth. Our health systems have proven to be completely unprepared to generate, in a timely manner, a flow of clinical data that could feed these analyses. Despite gigabytes of data being generated every day, the vast quantity is locked in secure hospital data servers and is not being made available for analysis. Routinely collected clinical data are, by and large, regarded as a tool to inform decisions about individual patients, and not as a key resource to answer clinical questions through statistical analysis. The initiatives to extract COVID-19 clinical data are often promoted by private groups of individuals and not by health systems, and are uncoordinated and inefficient. The consequence is that we have more clinical data on COVID-19 than on any other epidemic in history, but we have failed to analyze this information quickly enough to make a difference. In this viewpoint, we expose this situation and suggest concrete ideas that health systems could implement to dynamically analyze their routine clinical data, becoming learning health systems and reversing the current situation

    The Herschel Virgo Cluster Survey. IX. Dust-to-gas mass ratio and metallicity gradients in four Virgo spiral galaxies

    Get PDF
    Using Herschel data from the Open Time Key Project the Herschel Virgo Cluster Survey (HeViCS), we investigated the relationship between the metallicity gradients expressed by metal abundances in the gas phase as traced by the chemical composition of HII regions, and in the solid phase, as traced by the dust-to-gas mass ratio. We derived the radial gradient of the dust-to-gas mass ratio for all galaxies observed by HeViCS whose metallicity gradients are available in the literature. They are all late type Sbc galaxies, namely NGC4254, NGC4303, NGC4321, and NGC4501. We examined different dependencies on metallicity of the CO-to-H2_2 conversion factor (\xco), used to transform the 12^{12}CO observations into the amount of molecular hydrogen. We found that in these galaxies the dust-to-gas mass ratio radial profile is extremely sensitive to choice of the \xco\ value, since the molecular gas is the dominant component in the inner parts. We found that for three galaxies of our sample, namely NGC4254, NGC4321, and NGC4501, the slopes of the oxygen and of the dust-to-gas radial gradients agree up to \sim0.6-0.7R25_{25} using \xco\ values in the range 1/3-1/2 Galactic \xco. For NGC4303 a lower value of \xco0.1×\sim0.1\times 1020^{20} is necessary. We suggest that such low \xco\ values might be due to a metallicity dependence of \xco (from close to linear for NGC4254, NGC4321, and NGC4501 to superlinear for NGC4303), especially in the radial regions RG<_G<0.6-0.7R25_{25} where the molecular gas dominates. On the other hand, the outer regions, where the atomic gas component is dominant, are less affected by the choice of \xco, and thus we cannot put constraints on its value.Comment: 13 pages, 8 figures, A&A accepte
    corecore