147 research outputs found

    Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.

    Get PDF
    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.This research is supported by the Center forDynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it is supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302)

    Measurement of Lifetime and Decay-Width Difference in B0s -> J/psi phi Decays

    Get PDF
    We measure the mean lifetime, tau=2/(Gamma_L+Gamma_H), and the width difference, DeltaGamma=Gamma_L-Gamma_H, of the light and heavy mass eigenstates of the B0s meson, B0sL and B0sH, in B0s -> J/psi phi decays using 1.7 fb^-1 of data collected with the CDF II detector at the Fermilab Tevatron ppbar collider. Assuming CP conservation, a good approximation for the B0s system in the Standard Model, we obtain DeltaGamma = 0.076^+0.059_-0.063 (stat.) +- 0.006 (syst.) ps^-1 and tau = 1.52 +- 0.04 (stat.) +- 0.02 (syst.) ps, the most precise measurements to date. Our constraints on the weak phase and DeltaGamma are consistent with CP conservation. Dedicated to the memory of our dear friend and colleague, Michael P. Schmid

    Limits on Anomalous Triple Gauge Couplings in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present a search for anomalous triple gauge couplings (ATGC) in WW and WZ boson production. The boson pairs are produced in ppbar collisions at sqrt{s}=1.96 TeV, and the data sample corresponds to 350 pb-1 of integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. In this search one W decays to leptons, and the other boson (W or Z) decays hadronically. Combining with a previously published CDF measurement of Wgamma boson production yields ATGC limits of -0.18 < lambda < 0.17 and -0.46 < Delta kappa < 0.39 at the 95% confidence level, using a cut-off scale Lambda=1.5 TeV.Comment: 7 pages, 3 figures. Submitted to Phys. Rev.

    Forward-Backward Asymmetry in Top Quark Production in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    Reconstructable final state kinematics and charge assignment in the reaction ppbar->ttbar allows tests of discrete strong interaction symmetries at high energy. We define frame dependent forward-backward asymmetries for the outgoing top quark in both the ppbar and ttbar rest frames, correct for experimental distortions, and derive values at the parton-level. Using 1.9/fb of ppbar collisions at sqrt{s}=1.96 TeV recorded with the CDF II detector at the Fermilab Tevatron, we measure forward-backward top quark production asymmetries in the ppbar and ttbar rest frames of A_{FB,pp} = 0.17 +- 0.08 and A_{FB,tt} = 0.24 +- 0.14.Comment: 7 pages, 2 figures, submitted to Phys.Rev.Lett, corrected references and change of tex

    Search for Pair Production of Scalar Top Quarks Decaying to a tau Lepton and a b Quark in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We search for pair production of supersymmetric top quarks (~t_1), followed by R-parity violating decay ~t_1 -> tau b with a branching ratio beta, using 322 pb^-1 of ppbar collisions at sqrt{s}=1.96 TeV collected by the CDF II detector at Fermilab. Two candidate events pass our final selection criteria, consistent with the standard model expectation. We set upper limits on the cross section sigma(~t_1 ~tbar_1)*beta^2 as a function of the stop mass m(~t_1). Assuming beta=1, we set a 95% confidence level limit m(~t_1)>153 GeV/c^2. The limits are also applicable to the case of a third generation scalar leptoquark (LQ_3) decaying LQ_3 -> tau b.Comment: 7 pages, 2 eps figure

    Interferon Gamma-Dependent Intestinal Pathology Contributes to the Lethality in Bacterial Superantigen-Induced Toxic Shock Syndrome

    Get PDF
    Toxic shock syndrome (TSS) caused by the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes is characterized by robust T cell activation, profound elevation in systemic levels of multiple cytokines, including interferon-γ (IFN-γ), followed by multiple organ dysfunction and often death. As IFN-γ possesses pro- as well as anti-inflammatory properties, we delineated its role in the pathogenesis of TSS. Antibody-mediated in vivo neutralization of IFN-γ or targeted disruption of IFN-γ gene conferred significant protection from lethal TSS in HLA-DR3 transgenic mice. Following systemic high dose SEB challenge, whereas the HLA-DR3.IFN-γ+/+ mice became sick and succumbed to TSS, HLA-DR3.IFN-γ−/− mice appeared healthy and were significantly protected from SEB-induced lethality. SEB-induced systemic cytokine storm was significantly blunted in HLA-DR3.IFN-γ−/− transgenic mice. Serum concentrations of several cytokines (IL-4, IL-10, IL-12p40 and IL-17) and chemokines (KC, rantes, eotaxin and MCP-1) were significantly lower in HLA-DR3.IFN-γ−/− transgenic mice. However, SEB-induced T cell expansion in the spleens was unaffected and expansion of SEB-reactive TCR Vβ8+ CD4+ and CD8+ T cells was even more pronounced in HLA-DR3.IFN-γ−/− transgenic mice when compared to HLA-DR3.IFN-γ+/+ mice. A systematic histopathological examination of several vital organs revealed that both HLA-DR3.IFN-γ+/+ and HLA-DR3.IFN-γ−/− transgenic mice displayed comparable severe inflammatory changes in lungs, and liver during TSS. Remarkably, whereas the small intestines from HLA-DR3.IFN-γ+/+ transgenic mice displayed significant pathological changes during TSS, the architecture of small intestines in HLA-DR3.IFN-γ−/− transgenic mice was preserved. In concordance with these histopathological changes, the gut permeability to macromolecules was dramatically increased in HLA-DR3.IFN-γ+/+ but not HLA-DR3.IFN-γ−/− mice during TSS. Overall, IFN-γ seemed to play a lethal role in the immunopathogenesis of TSS by inflicting fatal small bowel pathology. Our study thus identifies the important role for IFN-γ in TSS
    • …
    corecore