665 research outputs found

    Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations.

    Get PDF
    A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA

    ReAS: Recovery of Ancestral Sequences for Transposable Elements from the Unassembled Reads of a Whole Genome Shotgun

    Get PDF
    We describe an algorithm, ReAS, to recover ancestral sequences for transposable elements (TEs) from the unassembled reads of a whole genome shotgun. The main assumptions are that these TEs must exist at high copy numbers across the genome and must not be so old that they are no longer recognizable in comparison to their ancestral sequences. Tested on the japonica rice genome, ReAS was able to reconstruct all of the high copy sequences in the Repbase repository of known TEs, and increase the effectiveness of RepeatMasker in identifying TEs from genome sequences

    Variation of 52 new Y-STR loci in the Y Chromosome Consortium worldwide panel of 76 diverse individuals

    Get PDF
    We have established 16 small multiplex reactions of two–four loci to amplify 52 recently described single-copy simple Y-STRs and typed these loci in a worldwide panel of 74 diverse men and two women. Two Y-STRs were found to be commonly multicopy in this sample set and were excluded from the study. Of the remaining 50, four (DYS481, DYS570, DYS576 and DYS643) showed higher diversities than the commonly used loci and can potentially provide increased haplotype discrimination in both forensic and anthropological work. Ten loci showed occasional missing alleles, duplicated peaks or intermediate-sized alleles. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at http://dx.doi.org/10.1007/s00414-006-0124-8 and is accessible for authorized users

    People of the British Isles: preliminary analysis of genotypes and surnames in a UK control population

    Get PDF
    There is a great deal of interest in fine scale population structure in the UK, both as a signature of historical immigration events and because of the effect population structure may have on disease association studies. Although population structure appears to have a minor impact on the current generation of genome-wide association studies, it is likely to play a significant part in the next generation of studies designed to search for rare variants. A powerful way of detecting such structure is to control and document carefully the provenance of the samples involved. Here we describe the collection of a cohort of rural UK samples (The People of the British Isles), aimed at providing a well-characterised UK control population that can be used as a resource by the research community as well as providing fine scale genetic information on the British population. So far, some 4,000 samples have been collected, the majority of which fit the criteria of coming from a rural area and having all four grandparents from approximately the same area. Analysis of the first 3,865 samples that have been geocoded indicates that 75% have a mean distance between grandparental places of birth of 37.3km, and that about 70% of grandparental places of birth can be classed as rural. Preliminary genotyping of 1,057 samples demonstrates the value of these samples for investigating fine scale population structure within the UK, and shows how this can be enhanced by the use of surnames

    Detection of novel chromosome-SCCmec variants in Methicillin Resistant Staphylococcus aureus and their inclusion in PCR based screening

    Get PDF
    Findings. To facilitate automation, a novel DNA extraction method for MRSA was adopted. The MRSA specific chromosome-SCCmec PCR was adapted, additional primers were added, and the performance was validated. From various laboratories in The Netherlands we received a total of 86 MRSA clinical isolates, that were negative in commercially available tests. We identified 14 MRSA strains with new variant chromosome-SCCmec junctions by sequence analysis. These MRSA strains appeared to carry SCCmec sequences with a high degree of homology to SCC regions of S. epidermidis and S. haemolyticus. All were included for detection in chromosome-SCCmec based PCR. Background: Efficient management of Methicillin Resistant Staphylococcus aureus (MRSA) in the hospital is needed to prevent dissemination. It is important that MRSA can be rapidly identified, and effective infection control measures can be initiated. Equally important is a rapid MRSA negative report, especially for patients in isolation. For negative screening we implemented fully automated high through-put molecular screening for MRSA. Conclusions: Fourteen variant chromosome-SCCmec junctions in MRSA, that are not detected in commercially available MRSA detection kits were added to our PCR to detect all currently known variant SCC-mec types of MRSA

    Discovery of Western European R1b1a2 Y Chromosome Variants in 1000 Genomes Project Data: An Online Community Approach

    Get PDF
    The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data

    Genotype and Cardiovascular Phenotype Correlations With TBX1 in 1,022 Velo-Cardio-Facial/Digeorge/22q11.2 Deletion Syndrome Patients

    Get PDF
    Haploinsufficiency of TBX1, encoding a T-box transcription factor, is largely responsible for the physical malformations in velo-cardio-facial /DiGeorge/22q11.2 deletion syndrome (22q11DS) patients. Cardiovascular malformations in these patients are highly variable, raising the question as to whether DNA variations in the TBX1 locus on the remaining allele of 22q11.2 could be responsible. To test this, a large sample size is needed. The TBX1 gene was sequenced in 360 consecutive 22q11DS patients. Rare and common variations were identified. We did not detect enrichment in rare SNP (single nucleotide polymorphism) number in those with or without a congenital heart defect. One exception was that there was increased number of very rare SNPs between those with normal heart anatomy compared to those with right-sided aortic arch or persistent truncus arteriosus, suggesting potentially protective roles in the SNPs for these phenotype-enrichment groups. Nine common SNPs (minor allele frequency, MAF \u3e 0.05) were chosen and used to genotype the entire cohort of 1,022 22q11DS subjects. We did not find a correlation between common SNPs or haplotypes and cardiovascular phenotype. This work demonstrates that common DNA variations in TBX1 do not explain variable cardiovascular expression in 22q11DS patients, implicating existence of modifiers in other genes on 22q11.2 or elsewhere in the genome

    Overt Cleft Palate Phenotype and TBX1 Genotype Correlations in Velo-cardio-facial/DiGeorge/22q11.2 Deletion Syndrome Patients

    Get PDF
    Velo-cardio-facial syndrome/DiGeorge syndrome, also known as 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome, with an estimated incidence of 1/2,000 – 1/4,000 live births. Approximately 9–11% of patients with this disorder have an overt cleft palate (CP), but the genetic factors responsible for CP in the 22q11DS subset are unknown. The TBX1 gene, a member of the T-box transcription factor gene family, lies within the 22q11.2 region that is hemizygous in patients with 22q11DS. Inactivation of one allele of Tbx1 in the mouse does not result in CP, but inactivation of both alleles does. Based on these data, we hypothesized that DNA variants in the remaining allele of TBX1 may confer risk to CP in patients with 22q11DS. To test the hypothesis, we evaluated TBX1 exon sequencing (n = 360) and genotyping data (n = 737) with respect to presence (n = 54) or absence (n = 683) of CP in patients with 22q11DS. Two upstream SNPs (rs4819835 and rs5748410) showed individual evidence for association but they were not significant after correction for multiple testing. Associations were not identified between DNA variants and haplotypes in 22q11DS patients with CP. Overall, this study indicates that common DNA variants in TBX1 may be nominally causative for CP in patients with 22q11DS. This raises the possibility that genes elsewhere on the remaining allele of 22q11.2 or in the genome could be relevant
    corecore