228 research outputs found
How Protostellar Outflows Help Massive Stars Form
We consider the effects of an outflow on radiation escaping from the
infalling envelope around a massive protostar. Using numerical radiative
transfer calculations, we show that outflows with properties comparable to
those observed around massive stars lead to significant anisotropy in the
stellar radiation field, which greatly reduces the radiation pressure
experienced by gas in the infalling envelope. This means that radiation
pressure is a much less significant barrier to massive star formation than has
previously been thought.Comment: 4 pages, 2 figures, emulateapj, accepted for publication in ApJ
Letter
Bondi Accretion in the Presence of Vorticity
The classical Bondi-Hoyle formula gives the accretion rate onto a point
particle of a gas with a uniform density and velocity. However, the Bondi-Hoyle
problem considers only gas with no net vorticity, while in a real astrophysical
situation accreting gas invariably has at least a small amount of vorticity. We
therefore consider the related case of accretion of gas with constant
vorticity, for the cases of both small and large vorticity. We confirm the
findings of earlier two dimensional simulations that even a small amount of
vorticity can substantially change both the accretion rate and the morphology
of the gas flow lines. We show that in three dimensions the resulting flow
field is non-axisymmetric and time dependent. The reduction in accretion rate
is due to an accumulation of circulation near the accreting particle. Using a
combination of simulations and analytic treatment, we provide an approximate
formula for the accretion rate of gas onto a point particle as a function of
the vorticity of the surrounding gas.Comment: 34 pages, 10 figures, accepted for publication in Ap
Recommended from our members
Ice nucleation efficiency of natural dust samples in the immersion mode
A total of 12 natural surface dust samples, which were surface-collected on four continents, most of them in dust source regions, were investigated with respect to their ice nucleation activity. Dust collection sites were distributed across Africa, South America, the Middle East, and Antarctica. Mineralogical composition has been determined by means of X-ray diffraction. All samples proved to be mixtures of minerals, with major contributions from quartz, calcite, clay minerals, K-feldspars, and (Na, Ca)-feldspars. Reference samples of these minerals were investigated with the same methods as the natural dust samples. Furthermore, Arizona test dust (ATD) was re-evaluated as a benchmark. Immersion freezing of emulsion and bulk samples was investigated by differential scanning calorimetry. For emulsion measurements, water droplets with a size distribution peaking at about 2 µm, containing different amounts of dust between 0.5 and 50 wt % were cooled until all droplets were frozen. These measurements characterize the average freezing behaviour of particles, as they are sensitive to the average active sites present in a dust sample. In addition, bulk measurements were conducted with one single 2 mg droplet consisting of a 5 wt % aqueous suspension of the dusts/minerals. These measurements allow the investigation of the best ice-nucleating particles/sites available in a dust sample. All natural dusts, except for the Antarctica and ATD samples, froze in a remarkably narrow temperature range with the heterogeneously frozen fraction reaching 10 % between 244 and 250 K, 25 % between 242 and 246 K, and 50 % between 239 and 244 K. Bulk freezing occurred between 255 and 265 K. In contrast to the natural dusts, the reference minerals revealed ice nucleation temperatures with 2–3 times larger scatter. Calcite, dolomite, dolostone, and muscovite can be considered ice nucleation inactive. For microcline samples, a 50 % heterogeneously frozen fraction occurred above 245 K for all tested suspension concentrations, and a microcline mineral showed bulk freezing temperatures even above 270 K. This makes microcline (KAlSi3O8) an exceptionally good ice-nucleating mineral, superior to all other analysed K-feldspars, (Na, Ca)-feldspars, and the clay minerals. In summary, the mineralogical composition can explain the observed freezing behaviour of 5 of the investigated 12 natural dust samples, and partly for 6 samples, leaving the freezing efficiency of only 1 sample not easily explained in terms of its mineral reference components. While this suggests that mineralogical composition is a major determinant of ice-nucleating ability, in practice, most natural samples consist of a mixture of minerals, and this mixture seems to lead to remarkably similar ice nucleation abilities, regardless of their exact composition, so that global models, in a first approximation, may represent mineral dust as a single species with respect to ice nucleation activity. However, more sophisticated representations of ice nucleation by mineral dusts should rely on the mineralogical composition based on a source scheme of dust emissions
Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland
A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles
Bondi-Hoyle Accretion in a Turbulent Medium
The Bondi-Hoyle formula gives the approximate accretion rate onto a point
particle accreting from a uniform medium. However, in many situations accretion
onto point particles occurs from media that are turbulent rather than uniform.
In this paper, we give an approximate solution to the problem of a point
particle accreting from an ambient medium of supersonically turbulent gas.
Accretion in such media is bimodal, at some points resembling classical
Bondi-Hoyle flow, and in other cases being closer to the vorticity-dominated
accretion flows recently studied by Krumholz, McKee, & Klein. Based on this
observation, we develop a theoretical prediction for the accretion rate, and
confirm that our predictions are highly consistent with the results of
numerical simulations. The distribution of accretion rates is lognormal, and
the mean accretion rate in supersonically turbulent gas can be substantially
enhanced above the value that would be predicted by a naive application of the
Bondi-Hoyle formula. However, it can also be suppressed by the vorticity, just
as Krumholz, McKee, & Klein found for non-supersonic vorticity-dominated flows.
Magnetic fields, which we have not included in these models, may further
inhibit accretion. Our results have significant implications for a number
astrophysical problems, ranging from star formation to the black holes in
galactic centers. In particular, there are likely to be significant errors in
results that assume that accretion from turbulent media occurs at the
unmodified Bondi-Hoyle rate, or that are based on simulations that do not
resolve the Bondi-Hoyle radius of accreting objects.Comment: Accepted for publication in ApJ; 13 pages, 9 figures, emulateap
Chemical characterization of atmospheric ions at the high altitude research station Jungfraujoch (Switzerland)
The ion composition at high altitude (3454 m a.s.l.) was measured with an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF) during a period of 9 months, from August 2013 to April 2014. The negative mass spectra were dominated by the ions of sulfuric, nitric, malonic, and methanesulfonic acid (MSA) as well as SO5. The most prominent positive ion peaks were from amines. The other cations were mainly organic compounds clustered with a nitrogen-containing ion, which could be either NH4+ or an aminium. Occasionally the positive spectra were characterized by groups of compounds each differing by a methylene group. In the negative spectrum, sulfuric acid was always observed during clear sky conditions following the diurnal cycle of solar irradiation. On many occasions we also saw a high signal of sulfuric acid during nighttime when clusters up to the tetramer were observed. A plausible reason for these events could be evaporation from particles at low relative humidity. A remarkably strong correlation between the signals of SO5 and CH3SO3- was observed for the full measurement period. The presence of these two ions during both the day and the night suggests a non-photochemical channel of formation which is possibly linked to halogen chemistry. Halogenated species, especially Br- and IO3-, were frequently observed in air masses that originated mainly from the Atlantic Ocean and occasionally from continental areas based on back trajectory analyses. We found I2O5 clustered with an ion, a species that was proposed from laboratory and modeling studies. All halogenated ions exhibited an unexpected diurnal behavior with low values during daytime. New particle formation (NPF) events were observed and characterized by (1) highly oxygenated molecules (HOMs) and low sulfuric acid or (2) ammonia-sulfuric acid clusters. We present characteristic spectra for each of these two event types based on 26 nucleation episodes. The mass spectrum of the ammonia-sulfuric acid nucleation event compares very well with laboratory measurements reported from the CLOUD chamber. A source receptor analysis indicates that NPF events at the Jungfraujoch take place within a restricted period of time of 24-48 h after air masses have had contact with the boundary layer. This time frame appears to be crucial to reach an optimal oxidation state and concentration of organic molecules necessary to facilitate nucleation.Peer reviewe
The XMM Cluster Survey: Evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation
We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation
since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with
spectroscopic redshifts drawn from the XMM Cluster Survey first data release
(XCS-DR1). This is the first study spanning this redshift range using a single,
large, homogeneous cluster sample. Using an orthogonal regression technique, we
find no evidence for evolution in the slope or intrinsic scatter of the
relation since z~1.5, finding both to be consistent with previous measurements
at z~0.1. However, the normalisation is seen to evolve negatively with respect
to the self-similar expectation: we find E(z)^{-1} L_X = 10^{44.67 +/- 0.09}
(T/5)^{3.04 +/- 0.16} (1+z)^{-1.5 +/- 0.5}, which is within 2 sigma of the zero
evolution case. We see milder, but still negative, evolution with respect to
self-similar when using a bisector regression technique. We compare our results
to numerical simulations, where we fit simulated cluster samples using the same
methods used on the XCS data. Our data favour models in which the majority of
the excess entropy required to explain the slope of the L_X-T relation is
injected at high redshift. Simulations in which AGN feedback is implemented
using prescriptions from current semi-analytic galaxy formation models predict
positive evolution of the normalisation, and differ from our data at more than
5 sigma. This suggests that more efficient feedback at high redshift may be
needed in these models.Comment: Accepted for publication in MNRAS; 12 pages, 6 figures; added
references to match published versio
The XMM Cluster Survey: The Stellar Mass Assembly of Fossil Galaxies
This paper presents both the result of a search for fossil systems (FSs)
within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results
of a study of the stellar mass assembly and stellar populations of their fossil
galaxies. In total, 17 groups and clusters are identified at z < 0.25 with
large magnitude gaps between the first and fourth brightest galaxies. All the
information necessary to classify these systems as fossils is provided. For
both groups and clusters, the total and fractional luminosity of the brightest
galaxy is positively correlated with the magnitude gap. The brightest galaxies
in FSs (called fossil galaxies) have stellar populations and star formation
histories which are similar to normal brightest cluster galaxies (BCGs).
However, at fixed group/cluster mass, the stellar masses of the fossil galaxies
are larger compared to normal BCGs, a fact that holds true over a wide range of
group/cluster masses. Moreover, the fossil galaxies are found to contain a
significant fraction of the total optical luminosity of the group/cluster
within 0.5R200, as much as 85%, compared to the non-fossils, which can have as
little as 10%. Our results suggest that FSs formed early and in the highest
density regions of the universe and that fossil galaxies represent the end
products of galaxy mergers in groups and clusters. The online FS catalog can be
found at http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.html.Comment: 30 pages, 50 figures. ApJ published version, online FS catalog added:
http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.htm
The XMM Cluster Survey: Active Galactic Nuclei and Starburst Galaxies in XMMXCS J2215.9-1738 at z=1.46
We use Chandra X-ray and Spitzer infrared observations to explore the AGN and
starburst populations of XMMXCS J2215.9-1738 at z=1.46, one of the most distant
spectroscopically confirmed galaxy clusters known. The high resolution X-ray
imaging reveals that the cluster emission is contaminated by point sources that
were not resolved in XMM observations of the system, and have the effect of
hardening the spectrum, leading to the previously reported temperature for this
system being overestimated. From a joint spectroscopic analysis of the Chandra
and XMM data, the cluster is found to have temperature T=4.1_-0.9^+0.6 keV and
luminosity L_X=(2.92_-0.35^+0.24)x10^44 erg/s extrapolated to a radius of 2
Mpc. As a result of this revised analysis, the cluster is found to lie on the
sigma_v-T relation, but the cluster remains less luminous than would be
expected from self-similar evolution of the local L_X-T relation. Two of the
newly discovered X-ray AGN are cluster members, while a third object, which is
also a prominent 24 micron source, is found to have properties consistent with
it being a high redshift, highly obscured object in the background. We find a
total of eight >5 sigma 24 micron sources associated with cluster members (four
spectroscopically confirmed, and four selected using photometric redshifts),
and one additional 24 micron source with two possible optical/near-IR
counterparts that may be associated with the cluster. Examining the IRAC colors
of these sources, we find one object is likely to be an AGN. Assuming that the
other 24 micron sources are powered by star formation, their infrared
luminosities imply star formation rates ~100 M_sun/yr. We find that three of
these sources are located at projected distances of <250 kpc from the cluster
center, suggesting that a large amount of star formation may be taking place in
the cluster core, in contrast to clusters at low redshift.Comment: Accepted for publication in ApJ, 16 pages, 10 figure
- …