1,174 research outputs found

    Multi-Wavelength Implications of the Companion Star in Eta Carinae

    Get PDF
    Eta Carinae is considered to be a massive colliding wind binary system with a highly eccentric (e \sim 0.9), 5.54-yr orbit. However, the companion star continues to evade direct detection as the primary dwarfs its emission at most wavelengths. Using three-dimensional (3-D) SPH simulations of Eta Car's colliding winds and radiative transfer codes, we are able to compute synthetic observables across multiple wavebands for comparison to the observations. The models show that the presence of a companion star has a profound influence on the observed HST/STIS UV spectrum and H-alpha line profiles, as well as the ground-based photometric monitoring. Here, we focus on the Bore Hole effect, wherein the fast wind from the hot secondary star carves a cavity in the dense primary wind, allowing increased escape of radiation from the hotter/deeper layers of the primary's extended wind photosphere. The results have important implications for interpretations of Eta Car's observables at multiple wavelengths.Comment: 5 pages, 4 figures, To be published in the proceedings of the meeting 'Four Decades of Research on Massive Stars' in honor of Tony Moffat, 11-15 July 2011, Saint-Michel-des-Saints, Quebe

    Probing the Oxidation State of Ocean Worlds with SUDA: Fe (ii) and Fe (iii) in Ice Grains

    Get PDF
    Characterizing the geochemistry of Europa and Enceladus is a key step for astrobiology investigations looking for evidence of life in their subsurface oceans. Transition metals with several oxidation states, such as iron, may be tracers of the oxidation state of icy ocean moon interiors. Their detection, as well as the characterization of their oxidation states, on the moons' (plume) ice grains would bring valuable new information about the geochemistry of both the subsurface oceans and surface processes. Impact ionization mass spectrometers such as the SUDA instrument on board Europa Clipper can analyze ice grains ejected from icy moons' surfaces and detect ocean-derived salts therein. Here we record mass spectra analogs for SUDA using the Laser Induced Liquid Beam Ion Desorption technique for Fe2+ and Fe3+ salts (both sulfates and chlorides). We show that impact ionization mass spectrometers have the capability to detect and differentiate ferrous (Fe2+) from ferric (Fe3+) ions in both cation and anion modes owing to their tendency to form distinct ionic complexes with characteristic spectral features. Peaks bearing Fe3+, such as [Fe3+ (OH)2]+ and [Fe3+ (OH)a Clb]−, are particularly important to discriminate between the two oxidation states of iron in the sample. The recorded analog spectra may allow the characterization of the oxidation state of the oceans of Europa and Enceladus with implications for hydrothermal processes and potential metabolic pathways for life forms in their subsurface oceans

    Abundant phosphorus expected for possible life in Enceladus’s ocean

    Get PDF
    Saturn’s moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean–seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42−), and total dissolved inorganic P could reach 10−7 to 10−2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10−10 mol/kg H2O from previous estimates and close to or higher than ∼10−6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus’s ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability

    Detection of phosphates originating from Enceladus’s ocean

    Get PDF
    Saturn’s moon Enceladus harbours a global1 ice-covered water ocean2,3. The Cassini spacecraft investigated the composition of the ocean by analysis of material ejected into space by the moon’s cryovolcanic plume4,5,6,7,8,9. The analysis of salt-rich ice grains by Cassini’s Cosmic Dust Analyzer10 enabled inference of major solutes in the ocean water (Na+, K+, Cl–, HCO3–, CO32–) and its alkaline pH3,11. Phosphorus, the least abundant of the bio-essential elements12,13,14, has not yet been detected in an ocean beyond Earth. Earlier geochemical modelling studies suggest that phosphate might be scarce in the ocean of Enceladus and other icy ocean worlds15,16. However, more recent modelling of mineral solubilities in Enceladus’s ocean indicates that phosphate could be relatively abundant17. Here we present Cassini’s Cosmic Dust Analyzer mass spectra of ice grains emitted by Enceladus that show the presence of sodium phosphates. Our observational results, together with laboratory analogue experiments, suggest that phosphorus is readily available in Enceladus’s ocean in the form of orthophosphates, with phosphorus concentrations at least 100-fold higher in the moon’s plume-forming ocean waters than in Earth’s oceans. Furthermore, geochemical experiments and modelling demonstrate that such high phosphate abundances could be achieved in Enceladus and possibly in other icy ocean worlds beyond the primordial CO2 snowline, either at the cold seafloor or in hydrothermal environments with moderate temperatures. In both cases the main driver is probably the higher solubility of calcium phosphate minerals compared with calcium carbonate in moderately alkaline solutions rich in carbonate or bicarbonate ions

    The dual endothelin converting enzyme/neutral endopeptidase inhibitor SLV-306 (daglutril), inhibits systemic conversion of big endothelin-1 in humans

    Get PDF
    Aims - Inhibition of neutral endopeptidases (NEP) results in a beneficial increase in plasma concentrations of natriuretic peptides such as ANP. However NEP inhibitors were ineffective anti-hypertensives, probably because NEP also degrades vasoconstrictor peptides, including endothelin-1 (ET-1). Dual NEP and endothelin converting enzyme (ECE) inhibition may be more useful. The aim of the study was to determine whether SLV-306 (daglutril), a combined ECE/NEP inhibitor, reduced the systemic conversion of big ET-1 to the mature peptide. Secondly, to determine whether plasma ANP levels were increased. Main methods - Following oral administration of three increasing doses of SLV-306 (to reach an average target concentration of 75, 300, 1200 ng ml− 1 of the active metabolite KC-12615), in a randomised, double blinded regime, big ET-1 was infused into thirteen healthy male volunteers. Big ET-1 was administered at a rate of 8 and 12 pmol kg− 1 min− 1 (20 min each). Plasma samples were collected pre, during and post big ET-1 infusion. ET-1, C-terminal fragment (CTF), big ET-1, and atrial natriuretic peptide (ANP) were measured. Key findings - At the two highest concentrations tested, SLV-306 dose dependently attenuated the rise in blood pressure after big ET-1 infusion. There was a significant increase in circulating big ET-1 levels, compared with placebo, indicating that SLV-306 was inhibiting an increasing proportion of endogenous ECE activity. Plasma ANP concentrations also significantly increased, consistent with systemic NEP inhibition. Significance - SLV-306 leads to inhibition of both NEP and ECE in humans. Simultaneous augmentation of ANP and inhibition of ET-1 production is of potential therapeutic benefit in cardiovascular disease

    NICER X-ray Observations of Eta Carinae During its Most Recent Periastron Passage

    Get PDF
    We report high-precision X-ray monitoring observations in the 0.4-10 keV band of the luminous, long-period colliding-wind binary Eta Carinae up to and through its most recent X-ray minimum/periastron passage in February 2020. Eta Carinae reached its observed maximum X-ray flux on 7 January 2020, at a flux level of 3.30×10103.30 \times 10^{-10} ergs s1^{-1} cm2^{-2}, followed by a rapid plunge to its observed minimum flux, 0.03×10100.03 \times 10^{-10} ergs s1^{-1} cm2^{-2} near 17 February 2020. The NICER observations show an X-ray recovery from minimum of only \sim16 days, the shortest X-ray minimum observed so far. We provide new constraints of the "deep" and "shallow" minimum intervals. Variations in the characteristic X-ray temperature of the hottest observed X-ray emission indicate that the apex of the wind-wind "bow shock" enters the companion's wind acceleration zone about 81 days before the start of the X-ray minimum. There is a step-like increase in column density just before the X-ray minimum, probably associated with the presence of dense clumps near the shock apex. During recovery and after, the column density shows a smooth decline, which agrees with previous NHN_{H} measurements made by SWIFT at the same orbital phase, indicating that changes in mass-loss rate are only a few percent over the two cycles. Finally, we use the variations in the X-ray flux of the outer ejecta seen by NICER to derive a kinetic X-ray luminosity of the ejecta of 1041\sim 10^{41} ergs s1^{-1} near the time of the "Great Eruption'

    Suzaku monitoring of hard X-ray emission from η carinae over a single binary orbital cycle

    Get PDF
    The Suzaku X-ray observatory monitored the supermassive binary system η Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ∼ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ∼3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the γ-ray source detected in this field. The helium-like Fe Kα line complex at ∼6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with τ ∼ 1011 cm-3 s-1. The NEI plasma increases in importance toward periastron

    Eta Carinae: an evolving view of the central binary, its interacting winds and its foreground ejecta

    Get PDF
    FUV spectra of Eta Car, recorded across two decades with HST/STIS, document multiple changes in resonant lines caused by dissipating extinction in our line of sight. The FUV flux has increased nearly ten-fold which has led to increased ionization of the multiple shells within the Homunculus and photo-destruction of molecular hydrogen. Comparison of observed resonant line profiles with CMFGEN model profiles allows separation of wind-wind collision and shell absorptions from the primary wind, P Cygni profiles.The dissipating occulter preferentially obscured the central binary and interacting winds relative to the very extended primary wind. We are now able to monitor changes in the colliding winds with orbital phase. High velocity transient absorptions occurred across the most recent periastron passage, indicating acceleration of the primary wind by the secondary wind which leads to a downstream, high velocity bowshock that is newly generated every orbital period. There is no evidence of changes in the properties of the binary winds.Comment: 36 pages, 22 figures, accepted Astrophysical Journa
    corecore