790 research outputs found

    Mechanisms of Reduced Vascular Tone Following Arteriogenesis Induced by Femoral Artery Ligation

    Get PDF
    The presence of a developed, native collateral network can decrease the severity of ischemic injury proceeding arterial occlusion. The collateral network must under arteriogenesis to enlarge and increase blood flow to the ischemic region. Although there has been tremendous effort attempting to understand the mechanisms of arteriogenesis, no therapies have been successful in improving patient outcome. To better understand the mechanisms involved in arteriogenesis, the effect of nitric oxide production, myogenic tone, and a-adrenergic receptors were evaluated as these have been identified as playing an important role in vascular injury. Arteriogenesis was induced by ligating the femoral artery between the epigastric and popliteal branches in male C57/BL6 mice between two to four months old. Pharmacological agents were dissolved in a physiological salt solution that was superfused over the exposed gracilis anterior to generate does response curves. The collateral diameter was measured using intravital microscopy. Diameter measurements were normalized to resting diameter to create percent changes for the operated vessels and contralateral sham. Procedures were performed at both seven and twenty-eight days following femoral artery ligation to evaluate how pathways changed with the restoration of vascular tone. Nitric oxide production does not appear to play an important role as the values for the day seven (-47 ± 7% for the operated and -43 ± 5% for the contralateral control) were similar to day twenty-eight (-31 ± 5% vs -27 ± 4 %, control and operated respectively). Myogenic tone does not appear to play an important role as the values for day seven (19 ± 3% for ligated and 31 ± 7% for the sham) are similar to day twenty-eight (25 ± 3% vs 39 ± 6%, ligated and sham respectively). a-adrenergic receptor stimulation appears to play an important role as there is a heightened response at day seven (-71 ±7 % vs -39 ± 6%, ligated vs sham respectively) compared to day twenty-eight ( -44 ± 4 % vs -31 ± 9%, ligated vs sham respectively). However, inhibition did not appear to be significant because there is a lack of response at both day seven (16 ± 9% vs 73 ±15 %, ligated vs sham, respectively) and day twenty-eight (16 ± 7% vs 50 ±7%, ligated vs sham, respectively). These findings suggest that there is lack of sympathetic innervation seven days after ligation that is restored twenty-eight days later

    Gap Junctions Link Regular-Spiking and Fast-Spiking Interneurons in Layer 5 Somatosensory Cortex

    Get PDF
    Gap junctions form electrical synapses that modulate neuronal activity by synchronizing action potential (AP) firing of cortical interneurons (INs). Gap junctions are thought to form predominantly within cortical INs of the same functional class and are therefore considered to act within discrete neuronal populations. Here, we challenge that view and show that the probability of electrical coupling is the same within and between regularspiking (RS) and fast-spiking (FS) cortical INs in 16-21 days old mice. Firing properties of these two populations were distinct from other INs types including neurogliaform and low-threshold spiking (LTS) cells. We also demonstrate that pre-junctional APs can depolarize post-junctional neurons and increase the probability of firing. Our findings of frequent gap junction coupling between functionally distinct IN subtypes suggest that cortical IN networks are much more extensive and heterogeneous than previously thought. This may have implications on mechanisms ranging from cognitive functions to modulation of pathological states in epilepsy and other neurological disorders.Peer reviewe

    Regulation of gap junction conductance by calcineurin through Cx43 phosphorylation: implications for action potential conduction

    Get PDF
    Cardiac arrhythmias are associated with raised intracellular [Ca2+] and slowed action potential conduction caused by reduced gap junction (GJ) electrical conductance (Gj). Ventricular GJs are composed of connexin proteins (Cx43), with Gj determined by Cx43 phosphorylation status. Connexin phosphorylation is an interplay between protein kinases and phosphatases but the precise pathways are unknown. We aimed to identify key Ca2+-dependent phosphorylation sites on Cx43 that regulate cardiac gap junction conductance and action potential conduction velocity. We investigated the role of the Ca2+-dependent phosphatase, calcineurin. Intracellular [Ca2+] was raised in guinea-pig myocardium by a low-Na solution or increased stimulation. Conduction velocity and Gj were measured in multicellular strips. Phosphorylation of Cx43 serine residues (S365 and S368) and of the intermediary regulator I1 at threonine35 was measured by Western blot. Measurements were made in the presence and absence of inhibitors to calcineurin, I1 or protein phosphatase-1 and phosphatase-2. Raised [Ca2 +]i decreased Gj, reduced Cx43 phosphorylation at S365 and increased it at S368; these changes were reversed by calcineurin inhibitors. Cx43-S368 phosphorylation was reversed by the protein kinase C inhibitor chelerythrine. Raised [Ca2+]i also decreased I1 phosphorylation, also prevented by calcineurin inhibitors, to increase activity of the Ca2+-independent phosphatase, PPI. The PP1 inhibitor, tautomycin, prevented Cx43-365 dephosphorylation, Cx43-S368 phosphorylation and Gj reduction in raised [Ca2+]i. PP2A had no role. Conduction velocity was reduced by raised [Ca2+]i and reversed by calcineurin inhibitors. Reduced action potential conduction and Gj in raised [Ca2+] are regulated by calcineurin-dependent Cx43-S365 phosphorylation, leading to Cx43-S368 dephosphorylation. The calcineurin action is indirect, via I1 dephosphorylation and subsequent activation of PP1.Centro de Investigaciones Cardiovasculare

    The structure and evolution of a forming galaxy cluster at z = 1.62

    Get PDF
    We present a comprehensive picture of the Cl 0218.3−0510 protocluster at z = 1.623 across 10 comoving Mpc. Using filters that tightly bracket the Balmer and 4000 Å breaks of the protocluster galaxies we obtain precise photometric redshifts resulting in a protocluster galaxy sample that is 89 ± 5 per cent complete and has a contamination of only 12 ± 5 per cent. Both star-forming and quiescent protocluster galaxies are located, which allows us to map the structure of the forming cluster for the first time. The protocluster contains six galaxy groups, the largest of which is the nascent cluster. Only a small minority of the protocluster galaxies are in the nascent cluster (11 per cent) or in the other galaxy groups (22 per cent), as most protocluster galaxies reside between the groups. Unobscured star-forming galaxies predominantly reside between the protocluster’s groups, whereas red galaxies make up a large fraction of the groups’ galactic content, so observing the protocluster through only one of these types of galaxies results in a biased view of the protocluster’s structure. The structure of the protocluster reveals how much mass is available for the future growth of the cluster and we use the Millennium Simulation, scaled to a Planck cosmology, to predict that Cl 0218.3−0510 will evolve into a 2.7+3.9 −1.7 × 1014M cluster by the present day

    The clustering of X-ray AGN at 0.5 < z < 4.5 : host galaxies dictate dark matter halo mass

    Get PDF
    We present evidence that active galactic nuclei (AGN) do not reside in 'special' environments, but instead show large-scale clustering determined by the properties of their host galaxies. Our study is based on an angular cross-correlation analysis applied to X-ray selected AGN in the COSMOS and UDS fields, spanning redshifts from z ∼ 4.5 to z ∼ 0.5. Consistent with previous studies, we find that AGN at all epochs are on average hosted by galaxies in dark matter haloes of 1012-1013 M⊙, intermediate between star-forming and passive galaxies. We find, however, that the same clustering signal can be produced by inactive (I.e. non-AGN) galaxies closely matched to the AGN in spectral class, stellar mass, and redshift. We therefore argue that the inferred bias for AGN lies in between the star-forming and passive galaxy populations because AGN host galaxies are comprised of a mixture of the two populations. Although AGN hosted by higher mass galaxies are more clustered than lower mass galaxies, this stellar mass dependence disappears when passive host galaxies are removed. The strength of clustering is also largely independent of AGN X-ray luminosity. We conclude that the most important property that determines the clustering in a given AGN population is the fraction of passive host galaxies. We also infer that AGN luminosity is likely not driven by environmental triggering, and further hypothesize that AGN may be a stochastic phenomenon without a strong dependence onenvironment.Publisher PDFPeer reviewe

    Regulation of gap junction conductance by calcineurin through Cx43 phosphorylation: implications for action potential conduction.

    Get PDF
    Cardiac arrhythmias are associated with raised intracellular [Ca2+] and slowed action potential conduction caused by reduced gap junction (GJ) electrical conductance (Gj). Ventricular GJs are composed of connexin proteins (Cx43), with Gj determined by Cx43 phosphorylation status. Connexin phosphorylation is an interplay between protein kinases and phosphatases but the precise pathways are unknown. We aimed to identify key Ca2+-dependent phosphorylation sites on Cx43 that regulate cardiac gap junction conductance and action potential conduction velocity. We investigated the role of the Ca2+-dependent phosphatase, calcineurin. Intracellular [Ca2+] was raised in guinea-pig myocardium by a low-Na solution or increased stimulation. Conduction velocity and Gj were measured in multicellular strips. Phosphorylation of Cx43 serine residues (S365 and S368) and of the intermediary regulator I1 at threonine35 was measured by Western blot. Measurements were made in the presence and absence of inhibitors to calcineurin, I1 or protein phosphatase-1 and phosphatase-2.Raised [Ca2+]i decreased Gj, reduced Cx43 phosphorylation at S365 and increased it at S368; these changes were reversed by calcineurin inhibitors. Cx43-S368 phosphorylation was reversed by the protein kinase C inhibitor chelerythrine. Raised [Ca2+]i also decreased I1 phosphorylation, also prevented by calcineurin inhibitors, to increase activity of the Ca2+-independent phosphatase, PPI. The PP1 inhibitor, tautomycin, prevented Cx43-365 dephosphorylation, Cx43-S368 phosphorylation and Gj reduction in raised [Ca2+]i. PP2A had no role. Conduction velocity was reduced by raised [Ca2+]i and reversed by calcineurin inhibitors. Reduced action potential conduction and Gj in raised [Ca2+] are regulated by calcineurin-dependent Cx43-S365 phosphorylation, leading to Cx43-S368 dephosphorylation. The calcineurin action is indirect, via I1 dephosphorylation and subsequent activation of PP1

    Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, G. E., Baumgartner, M. F., Corkeron, P. J., Bell, J., Berchok, C., Bonnell, J. M., Thornton, J. B., Brault, S., Buchanan, G. A., Cholewiak, D. M., Clark, C. W., Delarue, J., Hatch, L. T., Klinck, H., Kraus, S. D., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S. E., Parry, D., Pegg, N., Read, A. J., Rice, A. N., Risch, D., Scott, A., Soldevilla, M. S., Stafford, K. M., Stanistreet, J. E., Summers, E., Todd, S., & Van Parijs, S. M. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Global Change Biology, (2020): 1-30, doi:10.1111/gcb.15191.Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.We thank Chris Pelkie, David Wiley, Michael Thompson, Chris Tessaglia‐Hymes, Eric Matzen, Chris Tremblay, Lance Garrison, Anurag Kumar, John Hildebrand, Lynne Hodge, Russell Charif, Kathleen Dudzinski, and Ann Warde for help with project planning, field work support, and data management. For all the support and advice, thanks to the NEFSC Protected Species Branch, especially the passive acoustics group, Josh Hatch, and Leah Crowe. We thank the field and crew teams on all the ships that helped in the numerous deployments and recoveries. This research was funded and supported by many organizations, specified by projects as follows: data recordings from region 1 were provided by K. Stafford (funding: National Science Foundation #NSF‐ARC 0532611). Region 2 data: D. K. Mellinger and S. Nieukirk, National Oceanic and Atmospheric Administration (NOAA) PMEL contribution #5055 (funding: NOAA and the Office of Naval Research #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244‐08‐1‐0029, N00244‐09‐1‐0079, and N00244‐10‐1‐0047). Region 3A data: D. Risch (funding: NOAA and Navy N45 programs). Region 3 data: H. Moors‐Murphy and Fisheries and Oceans Canada (2005–2014 data), and the Whitehead Lab of Dalhousie University (eastern Scotian Shelf data; logistical support by A. Cogswell, J. Bartholette, A. Hartling, and vessel CCGS Hudson crew). Emerald Basin and Roseway Basin Guardbuoy data, deployment, and funding: Akoostix Inc. Region 3 Emerald Bank and Roseway Basin 2004 data: D. K. Mellinger and S. Nieukirk, NOAA PMEL contribution #5055 (funding: NOAA). Region 4 data: S. Parks (funding: NOAA and Cornell University) and E. Summers, S. Todd, J. Bort Thornton, A. N. Rice, and C. W. Clark (funding: Maine Department of Marine Resources, NOAA #NA09NMF4520418, and #NA10NMF4520291). Region 5 data: S. M. Van Parijs, D. Cholewiak, L. Hatch, C. W. Clark, D. Risch, and D. Wiley (funding: National Oceanic Partnership Program (NOPP), NOAA, and Navy N45). Region 6 data: S. M. Van Parijs and D. Cholewiak (funding: Navy N45 and Bureau of Ocean and Energy Management (BOEM) Atlantic Marine Assessment Program for Protected Species [AMAPPS] program). Region 7 data: A. N. Rice, H. Klinck, A. Warde, B. Martin, J. Delarue, and S. Kraus (funding: New York State Department of Environmental Conservation, Massachusetts Clean Energy Center, and BOEM). Region 8 data: G. Buchanan, and K. Dudzinski (funding: New Jersey Department of Environmental Protection and the New Jersey Clean Energy Fund) and A. N. Rice, C. W. Clark, and H. Klinck (funding: Center for Conservation Bioacoustics at Cornell University and BOEM). Region 9 data: J. E. Stanistreet, J. Bell, D. P. Nowacek, A. J. Read, and S. M. Van Parijs (funding: NOAA and US Fleet Forces Command). Region 10 data: L. Garrison, M. Soldevilla, C. W. Clark, R. A. Chariff, A. N. Rice, H. Klinck, J. Bell, D. P. Nowacek, A. J. Read, J. Hildebrand, A. Kumar, L. Hodge, and J. E. Stanistreet (funding: US Fleet Forces Command, BOEM, NOAA, and NOPP). Region 11 data: C. Berchok as part of a collaborative project led by the Fundacion Dominicana de Estudios Marinos, Inc. (Dr. Idelisa Bonnelly de Calventi; funding: The Nature Conservancy [Elianny Dominguez]) and D. Risch (funding: World Wildlife Fund, NOAA, and Dutch Ministry of Economic Affairs)

    The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification

    Get PDF
    Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development. Here we show that components of the transcriptional elongation regulatory machinery, CDK9 and CYCLINT1 of the P-TEFb complex, are required to regulate neural crest specification. In particular, we show that expression of the proto-oncogene c-Myc and c-Myc responsive genes are affected. Our data suggest that P-TEFb is crucial to drive expression of c-Myc, which acts as a ‘gate-keeper’ for the correct temporal and spatial development of the neural crest

    HST imaging of the dusty filaments and nucleus swirl in NGC4696 at the centre of the Centaurus Cluster

    Get PDF
    Narrow-band HST imaging has resolved the detailed internal structure of the 10 kpc diameter H α+[N II] emission line nebulosity in NGC4696, the central galaxy in the nearby Centaurus cluster, showing that the dusty, molecular, filaments have a width of about 60 pc. Optical morphology and velocity measurements indicate that the filaments are dragged out by the bubbling action of the radio source as part of the active galactic nucleus feedback cycle. Using the drag force we find that the magnetic field in the filaments is in approximate pressure equipartition with the hot gas. The filamentary nature of the cold gas continues inwards, swirling around and within the Bondi accretion radius of the central black hole, revealing the magnetic nature of the gas flows in massive elliptical galaxies. HST imaging resolves the magnetic, dusty, molecular filaments at the centre of the Centaurus cluster to a swirl around and within the Bondi radius
    corecore