242 research outputs found

    Application of ER Stress Biomarkers to Predict Formulated Monoclonal Antibody Stability

    Get PDF
    For a therapeutic mAb to reach the clinic, the molecule must be produced at an appropriate yield and quality, then formulated to maintain efficacy and stability. The formation of sub‐visible particles (SVPs) can impact on product stability and is monitored during formulation development however, the potential of a mAb to form such species can be influenced throughout the whole bioprocess. We investigate levels of intracellular ER stress perceived by cells, day of mAb harvest and the relationship to subsequent product stability of two mAbs (denoted A and B), produced in CHO cell lines, as determined by SVP content after accelerated stability studies. We show the propensity of mAb A to form SVPs can be predicted by transcript expression of biomarkers of cellular ER stress, heavy/light chain transcript and polypeptide amounts, and harvest day. Further, mAb A material harvested on day 9 of culture was more stable, in terms of SVP formation, than material harvested on day 13. These data suggest that ER stress perceived by CHO cells during culture can reflect the stability of a mAb, and that biomarkers of such stress could help define culture harvest time as a tool to control or reduce SVP formation in formulated mAbs

    Decision-making and referral processes for patients with motor neurone disease: a qualitative study of GP experiences and evaluation of a new decision-support tool

    Get PDF
    Background The diagnosis of motor neurone disease (MND) is known to be challenging and there may be delay in patients receiving a correct diagnosis. This study investigated the referral process for patients who had been diagnosed with MND, and whether a newly-developed tool (The Red Flags checklist) might help General Practitioners (GPs) in making referral decisions. Methods We carried out interviews with GPs who had recently referred a patient diagnosed with MND, and interviews/surveys with GPs who had not recently referred a patient with suspected MND. We collected data before the Red Flags checklist was introduced; and again one year later. We analysed the data to identify key recurring themes. Results Forty two GPs took part in the study. The presence of fasciculation was the clinical feature that most commonly led to consideration of a potential MND diagnosis. GPs perceived that their role was to make onward referrals rather than attempting to make a diagnosis, and delays in correct diagnosis tended to occur at the specialist level. A quarter of participants had some awareness of the newly-developed tool; most considered it useful, if incorporated into existing systems. Conclusions While fasciculation is the most common symptom associated with MND, other bulbar, limb or respiratory features, together with progression should be considered. There is a need for further research into how decision-support tools should be designed and provided, in order to best assist GPs with referral decisions. There is also a need for further work at the level of secondary care, in order that referrals made are re-directed appropriately

    A description of the origins, design and performance of the TRAITS-SGP Atlantic salmon Salmo salar L. cDNA microarray

    Get PDF
    The origins, design, fabrication and performance of an Atlantic salmon microarray are described. The microarray comprises 16 950 Atlantic salmon-derived cDNA features, printed in duplicate and mostly sourced from pre-existing expressed sequence tag (EST) collections [SALGENE and salmon genome project (SGP)] but also supplemented with cDNAs from suppression subtractive hybridization libraries and candidate genes involved in immune response, protein catabolism, lipid metabolism and the parr–smolt transformation. A preliminary analysis of a dietary lipid experiment identified a number of genes known to be involved in lipid metabolism. Significant fold change differences (as low as 1.2x) were apparent from the microarray analysis and were confirmed by quantitative real-time polymerase chain reaction analysis. The study also highlighted the potential for obtaining artefactual expression patterns as a result of cross-hybridization of similar transcripts. Examination of the robustness and sensitivity of the experimental design employed demonstrated the greater importance of biological replication over technical (dye flip) replication for identification of a limited number of key genes in the studied system. The TRAITS (TRanscriptome Analysis of Important Traits of Salmon)–salmon genome project microarray has been proven, in a number of studies, to be a powerful tool for the study of key traits of Atlantic salmon biology. It is now available for use by researchers in the wider scientific community

    Ecological consequences of early Late Pleistocene megadroughts in tropical Africa

    Get PDF
    Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, et al. (2007) Proc Natl Acad Sci USA 104:16416–16421]. This resulted in extraordinarily low lake levels, even in Africa\u27s deepest lakes. On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (\u3c400 mm/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706 m deep, was reduced to an ≈125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (≈35–15 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa

    Constraints from observations and modeling on atmosphere-surface exchange of mercury in eastern North America

    Get PDF
    Atmosphere-surface exchange of mercury, although a critical component of its global cycle, is currently poorly constrained. Here we use the GEOS-Chem chemical transport model to interpret atmospheric Hg-0 (gaseous elemental mercury) data collected during the 2013 summer Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks (NOMADSS) aircraft campaign as well as ground-and ship-based observations in terms of their constraints on the atmosphere-surface exchange of Hg-0 over eastern North America. Model-observation comparison suggests that the Northwest Atlantic may be a net source of Hg-0, with high evasion fluxes in summer (our best sensitivity simulation shows an average oceanic Hg-0 flux of 3.3 ng m(-2) h(-1) over the Northwest Atlantic), while the terrestrial ecosystem in the summer of the eastern United States is likely a net sink of Hg-0 (our best sensitivity simulation shows an average terrestrial Hg-0 flux of -0.6 ng m(-2) h(-1) over the eastern United States). The inferred high Hg-0 fluxes from the Northwest Atlantic may result from high wet deposition fluxes of oxidized Hg, which are in turn related to high precipitation rates in this region. We also find that increasing simulated terrestrial fluxes of Hg-0 in spring compared to other seasons can better reproduce observed seasonal variability of Hg-0 concentration at ground-based sites in eastern North America.Peer reviewe

    Functional Neuronal Circuits Promote Disease Progression in Cancer

    Get PDF
    The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues. We also demonstrate pharmacologic silencing of tumoral electrical activity. Tumors implanted in transgenic animals lacking nociceptor neurons show reduced electrical activity. These data suggest that intratumoral nerves remain functional at the tumor bed. Immunohistochemical staining demonstrates the presence of the neuropeptide, Substance P (SP), within the tumor space. We show that tumor cells express the SP receptor, NK1R, and that ligand/receptor engagement promotes cellular proliferation and migration. Our findings identify a mechanism whereby intratumoral nerves promote cancer progression

    Upward resetting of the vascular sympathetic baroreflex in middle-aged male runners

    Get PDF
    This study focussed on the influence of habitual endurance exercise training (i.e. committed runner or non-runner) on the regulation of muscle sympathetic nerve activity (MSNA) and arterial pressure in middle-aged (50 to 63 years, n= 23) and younger (19 to 30 years; n=23) normotensive men. Haemodynamic and neurophysiological assessments were performed at rest. Indices of vascular sympathetic baroreflex function were determined from the relationship between spontaneous changes in diastolic blood pressure (DBP) and MSNA. Large vessel arterial stiffness and left ventricular stroke volume also were measured. Paired comparisons were performed within each age-category. Mean arterial pressure and basal MSNA bursts·min-1 were not different between age-matched runners and non-runners. However, MSNA bursts·100 heartbeats-1, an index of baroreflex regulation of MSNA (vascular sympathetic baroreflex operating point) was higher for middle-aged runners (P=0.006), whereas this was not different between young runners and non-runners. The slope of the DBP-MSNA relationship (vascular sympathetic baroreflex gain) was not different between groups in either age-category. Aortic pulse wave velocity was lower for runners of both age-categories (P<0.03), although carotid β stiffness was lower only for middle-aged runners (P=0.04). For runners of both age-categories, stroke volume was larger, while heart rate was lower (both P<0.01). In conclusion, we suggest that neural remodelling and upward setting of the vascular sympathetic baroreflex compensates for cardiovascular adaptations after many years committed to endurance exercise training, presumably to maintain arterial blood pressure stability

    Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort.

    Get PDF
    Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study. Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation. One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the "hero" model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort. ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan. [Abstract copyright: © 2022 The Authors.
    corecore