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ABSTRACT 21 

This study focussed on the influence of habitual endurance exercise training (i.e. committed 22 

runner or non-runner) on the regulation of muscle sympathetic nerve activity (MSNA) and 23 

arterial pressure in middle-aged (50 to 63 years, n= 23) and younger (19 to 30 years; n=23) 24 

normotensive men. Haemodynamic and neurophysiological assessments were performed at 25 

rest. Indices of vascular sympathetic baroreflex function were determined from the 26 

relationship between spontaneous changes in diastolic blood pressure (DBP) and MSNA. 27 

Large vessel arterial stiffness and left ventricular stroke volume also were measured. Paired 28 

comparisons were performed within each age-category. Mean arterial pressure and basal 29 

MSNA bursts·min-1 were not different between age-matched runners and non-runners. 30 

However, MSNA bursts·100 heartbeats-1, an index of baroreflex regulation of MSNA 31 

(vascular sympathetic baroreflex operating point) was higher for middle-aged runners 32 

(P=0.006), whereas this was not different between young runners and non-runners. The 33 

slope of the DBP-MSNA relationship (vascular sympathetic baroreflex gain) was not different 34 

between groups in either age-category. Aortic pulse wave velocity was lower for runners of 35 

both age-categories (P<0.03), although carotid β stiffness was lower only for middle-aged 36 

runners (P=0.04). For runners of both age-categories, stroke volume was larger, while heart 37 

rate was lower (both P<0.01). In conclusion, we suggest that neural remodelling and upward 38 

setting of the vascular sympathetic baroreflex compensates for cardiovascular adaptations 39 

after many years committed to endurance exercise training, presumably to maintain arterial 40 

blood pressure stability.  41 
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NEW AND NOTEWORTHY 42 

Exercise training reduces muscle sympathetic burst activity in disease; this is often 43 

extrapolated to infer a similar effect in health. We demonstrate that burst frequency of 44 

middle-aged and younger men committed to endurance training is not different compared 45 

with age-matched casual exercisers. Notably, well-trained middle-aged runners display 46 

similar arterial pressure but higher sympathetic burst occurrence than untrained peers. We 47 

suggest homeostatic plasticity and upward setting of the vascular sympathetic baroreflex 48 

maintains arterial pressure stability following years of training.   49 

Downloaded from www.physiology.org/journal/ajpheart at Idaho State Univ (134.050.218.009) on May 7, 2019.



 
 

4 
 

INTRODUCTION 50 

Human ageing exerts a marked influence on blood pressure, which is the primary regulated 51 

variable of the cardiovascular system. Two hallmarks of cardiovascular aging are large-52 

vessel arterial stiffening (30), and chronic elevation of muscle sympathetic nerve activity, 53 

(MSNA) (27). The conventional wisdom is that these factors, amongst others, contribute to 54 

the age-related increase in arterial blood pressure observed in western society beyond 50 55 

years of age (13). 56 

Arterial baroreflex control of MSNA (i.e. vascular sympathetic baroreflex) is the 57 

primary mechanism through which the autonomic nervous system regulates vasomotor tone, 58 

and thus plays a pivotal role in blood pressure homeostasis. The age-related increase in 59 

MSNA is underpinned by resetting of the vascular sympathetic baroreflex (31), whereby the 60 

‘operating point’ (i.e. mean resting diastolic blood pressure [DBP] and corresponding MSNA 61 

bursts per 100 heartbeats, a measure of the probability of a burst occurrence) resets upward 62 

and rightward.  Vascular sympathetic baroreflex ‘resetting’ with age occurs in the absence of 63 

a change of reflex ‘gain’ (i.e. responsiveness to acute changes in blood pressure) (11, 25, 64 

26). Notably, however, it appears that a rise in arterial pressure does not necessarily follow 65 

progressive elevation in resting vascular sympathetic activity with advancing age (49). In 66 

contrast, baroreflex-mediated cardiac parasympathetic control (i.e. cardiovagal baroreflex 67 

gain) is progressively impaired with advancing age (11, 32).  Alterations to  mechanosensory 68 

transduction and neural control (44) may explain these changes to the vascular sympathetic 69 

and cardiovagal limbs of the arterial baroreflex with human ageing. 70 

Long-term aerobic exercise training mitigates against some of the hallmarks of 71 

cardiovascular aging. For example, lifelong endurance exercise training offsets age-related 72 

stiffening of the aorta (51) and carotid artery (47). However, the interaction of committed 73 

exercise training and age-related changes to vascular sympathetic activity is unclear. To 74 

date, relatively little consensus exists among previous microneurographic studies, which 75 

have found basal MSNA burst frequency for middle-aged and older endurance-trained men 76 
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is either higher (37), not different (38) or lower (44), compared to untrained peers. 77 

Furthermore, quantification of the number of burst occurrences relative to the number of 78 

opportunities for a burst (i.e. burst incidence) does not provide clarity. However, the method 79 

of burst quantification provides different neurophysiological insight into regulation of vascular 80 

sympathetic activity (5). Burst frequency is reflective of  the amount of sympathetic activity 81 

(or neurotransmitter release) that the vasculature is exposed to in a given time period (53). 82 

In contrast, burst incidence indicates the probability of a sympathetic burst occurring at a 83 

given arterial pressure (29). Furthermore, baroreceptor signals over a wide pressure range 84 

influence both the timing and the probability of sympathetic bursts. We contend, therefore, 85 

that burst incidence is an index of the baroreflex ‘gating’ sympathetic bursts (20, 21), rather 86 

than sympathetic outflow per se. In the only study to consider the influence of aging and 87 

chronic exercise training on vascular sympathetic baroreflex control, the training status of 88 

healthy older males had no effect on MSNA burst incidence (vascular sympathetic baroreflex 89 

operating point), or the MSNA responsiveness (gain) to a modified Oxford baroreceptor test 90 

(44).  In contrast, cross-sectional evidence from middle-aged and older men indicate that 91 

vigorous long-term endurance training attenuates the ageing-related decline in cardiovagal 92 

baroreflex responsiveness (34). 93 

Taking the various aforementioned uncertainties into account, the primary aim of this 94 

cross-sectional study was to investigate the effect that habitual endurance exercise training 95 

has on regulation of vascular sympathetic burst activity and resting blood pressure in healthy 96 

middle age. Because of marked sex differences in sympathetic regulation (18) and 97 

autonomic support of blood pressure (6), men only were studied to experimentally isolate the 98 

influence of long-term endurance training as much as possible. Furthermore, in order to 99 

examine the effect of exercise training independently of ageing, a secondary aim was to 100 

compare the sympathetic control of blood pressure between young runners and young non-101 

runners. To address these aims, we performed comprehensive haemodynamic and 102 

neurophysiological assessment, and measured central artery stiffness and left ventricular 103 
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stroke volume, in four groups of healthy normotensive men: middle-aged committed runners, 104 

middle-aged non-runners, younger runners and younger non-runners. Based upon limited 105 

data, we hypothesised that the vascular sympathetic baroreflex control would not be different 106 

between well-trained runners and non-runners. 107 

METHODS 108 

Ethical Approval  109 

This study conformed to the most recent Declaration of Helsinki, except for registration in a 110 

database. The Research Ethics Committee at the Cardiff School of Sport and Health 111 

approved all study procedures (16/7/02R) and participants provided written informed consent 112 

prior to entering the study. 113 

Participants 114 

Between August 2016 and August 2017, the eligibility to participate was assessed for 115 

seventy men. Forty-six participants completed the study. Each participant was categorised 116 

according to his age (i.e. middle-aged or young) and training status (i.e. committed runner or 117 

non-runner) (Table 1). Among middle-aged men, runners performed ≥ 25 miles of moderate 118 

to intense training per week for ≥ 10 years (n=13), whereas non-runners were casually 119 

recreationally active i.e. ≤ 3 hours of structured physical activity per week for ≥ 10 years 120 

(n=10). In the case of the young men, runners performed ≥ 50 miles of training per week 121 

(n=13) and non-runners performed ≤ 3 hours of structured physical activity per week, for ≥ 2 122 

years (n=10). All participants were free of known cardiovascular, metabolic or other chronic 123 

diseases, normotensive (<140/90 mmHg when supine), non-smokers, and non-obese (BMI < 124 

30 kg·m2) as assessed by a medical history, manual sphygmomanometry (Welch Allyn, UK) 125 

and measurement of height and body mass. Middle-aged men were further evaluated by 126 

resting and maximal exercise electrocardiogram.  127 
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Experimental overview 128 

Participants completed one screening visit and 2 days of physiological testing, with a 129 

minimum of one week between the tests. All screening and physiological tests were 130 

performed at the Cardiff School of Sport and Health Sciences in a quiet, temperature 131 

controlled (22-24°C) environment. We requested that participants abstain from caffeine, 132 

alcohol and strenuous exercise for twenty-four hours prior to arrival at the laboratory on each 133 

visit; none took medication at the time of testing. On one testing day, assessment of body 134 

composition (Bioelectrical impedance analysis; Bodystat 1500, Bodystat Ltd, Douglas, Isle of 135 

Man) and measurement of arterial stiffness were followed by a maximal incremental exercise 136 

test. On the other testing day, having fasted for six hours, participants underwent 137 

cardiovascular and sympathetic neural assessments.   138 

Assessment of arterial stiffness 139 

Sequential ECG-gated arterial pressure waveforms were recorded in accordance with 140 

current guidelines (50) from the carotid and femoral arteries, at the site of maximal arterial 141 

pulsation, enabling the calculation of aortic pulse wave velocity (aPWV; SphygmoCor, 142 

Cardie X Ltd, Australia). Furthermore, the β stiffness index of the right common carotid 143 

artery was determined via high-resolution ultrasonography, using a 12-MHz linear array 144 

transducer (Vivid Q, GE Medical, Norway), as previously described (19). Central blood 145 

pressure was estimated to calculate β stiffness index, by applying a generalized transfer 146 

function (41) to radial arterial waveforms, collected via a high fidelity micromanometer tipped 147 

probe (SphygmoCor, Cardie X Ltd, Australia). Carotid artery β stiffness index is reported in 148 

44 individuals (9 young non-runners, 12 young runners, 10 middle-aged non-runners, 13 149 

middle-aged runners).  150 

Cardiopulmonary exercise test 151 

All participants completed an incremental exercise test to exhaustion on a cycle ergometer 152 

(Lode Corival, Groningen, The Netherlands) to assess VO2 peak. Cycling was chosen for 153 
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reasons of safety and assessment of the exercise electrocardiogram. Each increment 154 

corresponded to an increase 20 watts per minute (Middle-aged runners started at 90W and 155 

young runners started at 120W; middle-aged and young non-runners started at 30W and 156 

50W, respectively). During the maximal exercise test oxygen consumption was measured 157 

continuously via a breath-by-breath analyser (Oxycon Pro, Jaeger, Hoechberg, Germany). 158 

Heart rate was measured throughout the exercise test via either a chest strap in the young 159 

groups (Polar Electro, RS400, Finland) or 12-lead electrocardiography in middle-aged men 160 

(Oxycon Pro, Jaeger, Hoechberg, Germany).  161 

Hemodynamics and sympathetic neural activity  162 

Heart rate and blood pressure were monitored continuously via three-lead 163 

electrocardiography and finger photoplethysmography (FinometerPro, FMS, Groningen, 164 

Netherlands), with participants supine. The arterial pressure waveform was calibrated at 165 

regular intervals to the average resting systolic and diastolic pressures measured via manual 166 

sphygmomanometry. Echocardiograms were acquired using a commercially available 167 

ultrasound system (Vivid E9, GE Medical, Norway) with a 1.5 to 4 MHz array probe. Images 168 

were obtained from apical 4 and 2 chamber views by a single experienced sonographer 169 

(RNL) and saved for offline analysis with commercially available software (EchoPAC, BT12, 170 

GE Medical, Norway).  171 

Multiunit muscle sympathetic nerve activity was obtained by microneurography using 172 

a recording system (Nerve Traffic Analyser, Model 663 C, University of Iowa, Iowa City, IA) 173 

and following a recognized technique (45). In brief, a unipolar tungsten microelectrode (FHC, 174 

Bowdoin, ME), with shaft diameter of 0.1 mm (impedance 1-5 MW), was placed across the 175 

skin at the popliteal fossa and inserted into the peroneal nerve by an experienced 176 

microneurographer (JPM). A reference electrode was placed subcutaneously approximately 177 

2-3 cm above from the site of the recording electrode. The recorded neurogram was 178 

amplified (70, 000 to 160, 000 fold), band-pass filtered (700 to 2000 Hz), full-wave rectified 179 

and integrated with a resistance-capacitance circuit (time constant 0.1 sec). Satisfactory 180 
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recordings of MSNA were identified, dependent on the following criteria (54), (i) pulse-181 

synchronous “bursts” of activity, (ii) increased “burst” occurrence in response to voluntary 182 

apnoea, (iii) unaffected “burst” pattern during stroking of the skin, and (iv) 3:1 signal to noise 183 

ratio. At least 10 minutes after an acceptable MSNA recording site was found, 184 

echocardiograms and other baseline data were acquired. Hemodynamic and neural data 185 

were sampled at 1000Hz using a commercial data acquisition system and stored for offline 186 

data analysis (Chart Version 8, Lab Chart Pro, AD Instruments, UK). 187 

Assessment of arterial baroreflex function 188 

Hemodynamic and neural recordings were acquired for six minutes in order to characterize 189 

the arterial baroreflex regulation of MSNA and interbeat RR interval. Respiratory rate was 190 

monitored via a nasal cannula (Capnocheck® Sleep Capnograph, Smiths Medical, UK), to 191 

ensure that the participants had a regular breathing pattern, due to the influence of breath-192 

hold on MSNA (9). Examples of the dynamic relationship between beat-by beat arterial 193 

pressure and bursts of MSNA are shown in Figure 1. 194 

Data Analyses 195 

Stroke volume was estimated using the Simpson’s-biplane method (24), thus permitting 196 

determination of cardiac output (Q; heart rate x stroke volume) and the total peripheral 197 

resistance (TPR; Q/mean arterial pressure). Satisfactory images for the quantification of 198 

stroke volume were not recorded in one individual (one middle-aged runner); accordingly, 199 

stroke volume, Q and TPR data are reported for forty-five individuals. 200 

Multi-unit bursts of MSNA were verified by two investigators (DJW/JPM) via visual 201 

inspection following adjustment for baroreflex latency (54) (time between R wave and peak 202 

burst height), which aligned each burst with the appropriate R wave of the ECG. MSNA was 203 

quantified as burst frequency (bursts per minute [bursts·min-1]) and burst incidence (bursts 204 

per 100 heartbeats [bursts·100hb-1]). 205 
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The slope of the stimulus-response relationship between DBP and MSNA burst 206 

probability was calculated to represent vascular sympathetic baroreflex gain (21, 45). Briefly, 207 

DBP was averaged into two mmHg bins, to minimize the influence of respiration on MSNA 208 

and to maximize the number of data points for inclusion in the linear regression model. The 209 

percentage of cardiac cycles associated with a burst of MSNA (ranging from zero to 100%), 210 

per bin of DBP, was used to calculate burst probability. Data were included for further 211 

analysis if, (i) at least five data points for each linear regression were available and (ii) a 212 

correlation coefficient of ≥ - 0.5 was present (14). Mean values and tests of statistical 213 

significance are presented for 20 middle-aged (11 runners) and 20 younger men (11 214 

runners). Statistical weighting was adopted for this analyses to minimize the influence of 215 

differences in the number of cardiac cycles within each DBP bin (21). The operating point of 216 

the vascular sympathetic baroreflex was determined from mean diastolic pressure and 217 

corresponding average burst incidence. 218 

Cardiovagal baroreflex gain was assessed by the sequence method using 219 

customized computer software (Cardioseries version 2.4, Ribeirao Preto, São Paulo, Brazil). 220 

If R-R interval was ≥800 milliseconds a delay of 1 beat was applied so that the SBP was 221 

regressed against the following R-R interval (12). Data were included for further analysis 222 

upon condition of (i) a minimum of three data points for a linear regression were available 223 

and (ii) a correlation coefficient of ≥ 0.8 was present (40).  The operating point of the 224 

cardiovagal baroreflex was determined from mean prevailing SBP and corresponding 225 

average RR interval. Data, including positive and negative ramp gains, and the number of 226 

sequences, are presented for 20 middle-aged (11 runners) and 21 younger men (11 227 

runners). 228 

Statistical Analyses 229 

In line with our primary (i.e. middle-aged runner versus age matched non-runner) and 230 

secondary (i.e. younger runner versus age matched non-runner) aims, and after checking 231 

compliance with basic parametric assumptions, we assessed between-group differences for 232 
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middle-aged runners and non-runners, and for young runners and non-runners, via 233 

independent t-tests. Alpha was set a-priori as P<0.05. All statistical analyses were 234 

completed using Statistics Package for Social Sciences for Windows, (Version 23, Chicago, 235 

IL) and data are reported as mean (95% Confidence Intervals). 236 

RESULTS 237 

Participant demographics 238 

By design, training and cardiorespiratory fitness (VO2peak) were greater for runners compared 239 

to age-matched non-runners (middle-aged and young, P<0.001; Table 1). Runners had 240 

lower body mass (middle-aged, P=0.001; young, P=0.003) and body mass index (middle-241 

aged and young, P<0.001), and less body fat percentage (middle-aged and young, 242 

P<0.001), than age-matched non-runners. Systolic BP (P=0.041) and Diastolic BP (P=0.027) 243 

were lower for young runners compared to age-matched non-runners. Screening blood 244 

pressures were not different among middle-aged runners and untrained peers.   245 

Resting hemodynamics and vascular sympathetic neural activity 246 

Stroke volume was higher (middle-aged, P=0.03; young, P<0.01) and heart rate was lower 247 

(middle-aged, P<0.001; young, P<0.001) between both groups of runners compared to age-248 

matched non-runners (Table 2). There were no other differences in resting haemodynamic 249 

parameters between runners and non-runners for either age-category. Resting MSNA burst 250 

frequencies were not different among middle-aged runners and non-runners, or among 251 

young runners and age-matched non-runners. Burst incidence data is considered in the 252 

following section.   253 

Arterial baroreflex function 254 

Among middle-aged men, there was no difference between runners and non-runners for the 255 

diastolic operating pressure of the vascular sympathetic baroreflex (P=0.57); however, the 256 

corresponding operating MSNA (i.e. bursts·100hb-1) was higher in the runners (P<0.01; 257 
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Figure 2A). Among young men, there was no significant difference in vascular sympathetic 258 

operating point between runners and non-runners (DBP, P=0.23; corresponding MSNA 259 

bursts·100hb-1, P=0.24). The vascular sympathetic baroreflex gain (i.e. slope of the DBP-260 

MSNA relationship) was not influenced by the training status of either middle-aged (-6.07 [-261 

8.80 to -3.55] vs -7.30 [-10.49 to -4.12] %·mHg-1
, P=0.55) or younger men (-6.68 [-13.1 to -262 

2.33] vs. -5.82 [-7.15 to -4.49] %·mHg-1, P=0.58). 263 

Among middle-aged runners and non-runners, there was no difference in the 264 

prevailing systolic pressure for the cardiovagal baroreflex (P=0.58), but the corresponding 265 

RR interval was higher for runners (P<0.01; Figure 2B). Among young men, the prevailing 266 

systolic pressure was lower (P=0.02) and the corresponding RR interval was higher for 267 

runners (P<0.01). The cardiovagal baroreflex gain was not different between runners and 268 

non-runners of both age groups; data for positive and negative pressure ramps and the 269 

number of sequences per ramp are presented in Table 3.   270 

Arterial stiffness 271 

Runners had lower aPWV (middle-aged, P=0.026; young, P=0.027) compared to age-272 

matched non-runners (Table 2). In contrast, the β stiffness index of the carotid artery was 273 

lower only for the middle-aged runners compared to age-matched non-runners (P=0.041).  274 

DISCUSSION  275 

The principal findings are as follows: 1) for middle-aged men, many years of moderate to 276 

vigorous endurance exercise training sets the operating point of the vascular sympathetic 277 

baroreflex at a burst occurrence that is higher than for peers that have not trained;  2)  higher 278 

burst occurrence does not influence overall reflex gain, basal burst frequency, or resting 279 

arterial pressure; 3) for younger men, endurance training has a limited effect on the 280 

operating point and there are no differences in vascular sympathetic baroreflex reflex gain or 281 

basal burst frequency compared with untrained peers. Taken together, these findings 282 

indicate that some form of remodelling in middle-aged men following many years of 283 
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committed endurance exercise training plays a critical role in the baroreflex control of 284 

vascular sympathetic bursts and resting blood pressure.   285 

The effect of training on vascular sympathetic baroreflex control  286 

Regardless of the training status, we observed similar frequencies of sympathetic 287 

bursts in microneurographic recordings taken from middle-aged males during supine rest. An 288 

intriguing finding, however, is that the well-trained men exhibit a greater MSNA burst 289 

occurrence, and by some margin (40 to 50 % approximately); this occurs without any 290 

obvious difference in the corresponding diastolic pressure stimulus. Together, we interpret 291 

these data for MSNA burst frequency and occurrence as evidence that many years of 292 

training alters the gating of sympathetic bursts (i.e. baroreflex control) without influencing the 293 

frequency of sympathetic bursts per minute (i.e. rate of neurotransmitter release). Although 294 

this might seem contradictory, burst frequency and occurrence provide slightly different 295 

neurophysiological information (5, 29, 53). Furthermore, reciprocal interplay between 296 

exercise bradycardia (i.e. fewer opportunities for a burst) and the higher MSNA operating 297 

point (i.e. greater burst occurrence) explain why the burst frequency for trained runners and 298 

non-runners is similar.  299 

Our data indicate that an exercise training-induced upward setting for the MSNA 300 

operating point in middle age occurs without any change in the ability to increase or 301 

decrease vasoconstrictor outflow during fluctuations of resting arterial pressure. In other 302 

words, vascular sympathetic baroreflex overall gain is unaffected by training. Stüdinger and 303 

colleagues (44), using the modified Oxford baroreceptor test, also observed that overall gain 304 

was similar among older trained and untrained men. Unlike the present study, however, no 305 

difference was observed for sympathetic burst occurrence, and resting burst frequency was 306 

marginally lower for endurance-trained versus untrained middle-aged males.   307 

Other studies of trained and untrained middle-aged and older people have recorded 308 

resting MSNA without specifically addressing vascular sympathetic baroreflex function. 309 
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Notarius and colleagues (38) observed that burst occurrence was higher, while basal 310 

sympathetic burst frequency was similar, for endurance trained middle-aged men compared 311 

with sedentary peers.  In contrast, Ng and co-workers reported higher sympathetic burst 312 

occurrence and burst frequency for older-endurance trained athletes; however, these 313 

findings may reflect an older cohort, or inclusion of endurance trained females, for whom 314 

burst frequency was markedly higher compared with untrained peers (37). Whilst we cannot 315 

explain this lack of consensus, it may reflect the differences in the endurance phenotype 316 

across the studies. Factors that influence basal vascular sympathetic outflow with human 317 

ageing, such as abdominal adiposity (15), distensibility of the barosensory vessel walls (48), 318 

and blood volume (2), all are influenced by the dose of endurance exercise training.  319 

To isolate the effect of endurance exercise training from human ageing, we also 320 

studied younger males. As with older men, we found no difference for basal burst frequency 321 

between well-trained runners and non-runners. The burst occurrence was marginally higher 322 

for the runners, but this difference was modest in comparison to that between the older 323 

groups. These findings in young men are similar to previous cross-sectional studies (7, 43, 324 

46). Furthermore, vascular sympathetic baroreflex gain is similar for trained runners and 325 

non-runners. Thus, our data suggest that the endurance phenotype traits of young men does 326 

not include a higher operating point for the vascular sympathetic baroreflex.  327 

Differences for aortic compliance and resting heart rate between young runners and 328 

non-runners are comparable with those for the middle-aged men. However, one noteworthy 329 

distinction relates to the difference in resting stroke volume. For young, well-trained men, 330 

stroke volume during supine rest was 50% greater than that of age-matched non-runners. 331 

For older men, resting stroke volume was only 12% greater for runners compared with age-332 

matched non-runners. This lesser difference in stroke volume may explain why endurance 333 

training effects the operating point for the vascular sympathetic baroreflex only for committed 334 

middle-aged runners. That is, older runners rely more on vascular sympathetic neural activity 335 

than cardiac output to support arterial pressure. However, further investigation of potential 336 
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interaction of left ventricular stroke volume and the vascular sympathetic baroreflex is 337 

required.     338 

Our interpretation for young men in this study is consistent with a previous report that 339 

endurance training does not influence autonomic support of blood pressure in the young 340 

(17). However, our findings do contrast with those of a study by Alvarez and colleagues (1). 341 

As in the present study, burst occurrence was marginally higher in trained men, while basal 342 

MSNA burst frequency was similar. However, when adiposity is taken into account, burst 343 

occurrence and burst frequency both were greater for endurance trained versus untrained 344 

men (1). Furthermore, in contrast to the present study, sympathetic baroreflex gain was 345 

lower for endurance-trained compared with untrained young men, an effect regardless of 346 

percentage body fat. This suggests that body composition may be important, at least in 347 

younger men.  348 

The effect of training on cardiovagal baroreflex control  349 

It is well known that endurance athletes display exercise-induced bradycardia, 350 

although considerable debate exists surrounding the mechanism(s) involved (3, 4). 351 

Furthermore, arterial baroreceptor control of blood pressure is mediated predominantly via 352 

sympathetic vascular regulation, rather than by reflex changes in heart period (8). 353 

Nonetheless, we determined how habitual endurance exercise influenced the 354 

responsiveness of the cardiovagal baroreflex in middle age. For well-trained middle-aged 355 

men, as expected, the cardiovagal baroreflex operated around a considerably longer RR 356 

interval at rest; however, the baroreflex gain was similar among runners and non-runners. 357 

Previous work has shown that middle-aged endurance trained men display greater 358 

cardiovagal baroreflex gain than sedentary controls, but not moderately-active, age-matched 359 

peers (34). In the case of the younger trained men in this study, the cardiovagal baroreflex 360 

also operated around a longer heart period, without any difference in baroreflex gain 361 

compared with age-matched non-runners; this finding for gain is in agreement with previous 362 

studies in younger men (1, 7, 34). 363 
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Remodelling of the vascular sympathetic baroreflex  364 

Mechanosensory transduction, central mediation, and efferent neurotransmission are 365 

integrated into the baroreflex regulation of vasomotor tone and arterial pressure. 366 

Furthermore, it is proposed that human aging may have opposing influences on mechanical 367 

and neural events (44). However, we can only speculate upon potential sites where 368 

additional remodelling might have occurred in committed middle-aged runners to explain our 369 

findings. Many years of training may influence the strength and/or timing of mechanosensory 370 

signals controlling efferent sympathetic burst occurrence; this could arise from altered 371 

vascular mechanics and/or a change to the threshold for baroreceptor activation. 372 

Specifically, well-trained middle-aged men have less stiff barosensory regions; furthermore, 373 

more complete elastic recoil during  a longer diastolic period could lead to a longer interval of 374 

‘silence’ in the afferent baroreceptor signal (21). However, the apparent lack of a similar 375 

upward setting of the MSNA operating point for younger trained men, who also possess 376 

lesser vascular stiffness and display bradycardia, argues against this. However, endurance-377 

training induced cardiovascular remodelling may only lead to upward vascular sympathetic 378 

baroreflex resetting in middle-aged men due to increased autonomic support of blood 379 

pressure with age (16).  380 

Animal studies indicate that chronic exercise training potentially influences 381 

baroreceptor control of sympathetic bursts at brain structures including, the nucleus tractus 382 

solitairius, the paraventricular nucleus of the hypothalamus, and the rostral ventrolateral 383 

medulla (36). Brain imaging studies have identified some of the same sites as regions of 384 

baroreflex control in humans (22) (23). It is possible, therefore, that neural plasticity and 385 

exercise-induced central remodelling previously observed in animals underpins the higher 386 

sympathetic burst occurrence in middle-aged trained males.  387 

 Changes to efferent neurotransmission may also mediate upward vascular 388 

sympathetic baroreflex setting. Short-term exercise training reduces alpha-adrenergic 389 

vasoconstrictor responsiveness in (35), and a reduction of sympathetic vascular transduction 390 
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has been proposed to contribute to orthostatic intolerance observed in some highly-trained 391 

individuals (52). Vasoconstrictor responsiveness to noradrenaline declines with advancing 392 

age (10), which may counteract the effects of elevated MSNA burst frequency (16). 393 

Furthermore, Notarius and colleagues (38) observed that sympathetic vascular transduction 394 

during baroreflex-mediated sympathoexcitation may be altered further in trained middle-aged 395 

men. Another possibility is that vascular sympathetic baroreflex resetting may be a 396 

compensatory mechanism to offset training-induced vascular changes (42) (33). All of these 397 

aforementioned possibilities require investigation.  Notably, irrespective of the location(s), 398 

exercise-induced remodelling does not alter vascular sympathetic baroreflex gain, at least 399 

not the integrated gain.  400 

Experimental Considerations 401 

Vascular sympathetic baroreflex gain was calculated by associating spontaneous 402 

fluctuations in DBP to the occurrence of bursts of MSNA. We did not take strength 403 

(amplitude) of sympathetic bursts into account, because baroreceptor signals modulate burst 404 

occurrence, whereas less is known of the mechanisms that govern amplitude (21, 29). 405 

Furthermore, we did not assess vascular sympathetic baroreflex gain to rising and falling 406 

pressures independently and we acknowledge that this does not take baroreflex hysteresis 407 

into account (14).  408 

It is reported that dietary salt and nitrate can influence sympathetic burst activity (28, 409 

39). However, we did not control for diet in our study, therefore we cannot exclude some 410 

influence on our data. Every effort was made to accurately record the number of years over 411 

which an individual had exercised at their current level. In addition, we recorded lifetime 412 

physical activity and exercise and observed a clear difference in maximal aerobic capacity 413 

between the trained and untrained groups. However, group allocation, determined by 414 

habitual endurance training, may limit the conclusions based on other components of 415 

exercise training. These components include mode, intensity, duration, all of which may 416 

have an impact on cardiac, vascular and neural remodelling. Because sex of the participants 417 
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was controlled for in this study, future studies are required to properly address potential sex 418 

differences. Although our participants were non-obese, we did not specifically control for 419 

adiposity, which is known to influence sympathetic burst activity. However, post hoc analysis 420 

suggest that percentage body fat was not a significant covariate for any indices of 421 

sympathetic activity in this study. Finally, the a priori intention of our study was to investigate 422 

the effect that committed endurance exercise training has on elevated sympathetic neural 423 

activity and vascular sympathetic baroreflex control of resting blood pressure in healthy 424 

middle-aged men. However, we also studied young men in order to investigate the effect of 425 

endurance training independently of cardiovascular ageing. The use of independent samples 426 

t-tests reflects these a priori questions. To limit the chance of a type 1 error, we did not 427 

perform statistical comparisons between middle-aged runners and young runners, or middle-428 

aged non-runners and young non-runners.     429 

CONCLUSION 430 

This study demonstrates upward setting of arterial baroreflex regulation of vascular 431 

sympathetic bursts following committed endurance training in middle-aged men. Importantly, 432 

vascular sympathetic baroreflex resetting coupled to exercise-induced bradycardia, results in 433 

a similar basal burst frequency compared with untrained peers. Furthermore, the study 434 

demonstrates that training status does not influence the MSNA operating point for younger 435 

well–trained men, who also display similar sympathetic burst frequency compared with 436 

untrained peers. In our view, remodelling within the vascular sympathetic baroreflex arc, 437 

culminating in a higher MSNA operating point, is another example of phenotypic adaptation 438 

to lifelong (> 25 years) training. This occurs, presumably, to maintain resting vasomotor tone 439 

and blood pressure stability and to complement cardiac and vascular adaptations to many 440 

years of endurance exercise training.  441 
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 600 

Table 1 - Participant Characteristics 
 Young non-runners 

(n=10) 
Young runners 

(n=13) 
Middle-aged non-

runners (n=10) 
Middle-aged runners

(n=13) 
Demographics     

Age, years 23 (21-25) 22 (21-24) 53 (52-55) 57 (54-59) 
Stature, cm 178.1 (174.0-182.3) 179.9 (176.9-183.0) 175.6 (170.5-180.6) 174.7 (170.9-178.5) 
Body Mass, kg 80.4 (68.8-92.0) 67.0 (63.9-70.0) * 80.9 (73.8-88.0) 66.1 (61.3-70.9) † 
BMI, kg·m2 25.4 (22.1-28.8) 20.8 (19.9-21.6) * 26.2 (24.0-28.5) 21.6 (20.7-22.6) † 
Body fat (%) 19.7 (15.2-24.1) 10.7 (7.8-13.6) * 26.8 (20.4-33.3) 17.5 (15.6-19.3) † 

Blood Pressure     
SBP, mmHg 119 (109-128) 111 (108-114) * 119 (113-124) 118 (113-123) 
DBP, mmHg 71 (67-76) 66 (62-69) * 76 (73-80) 74 (70-78) 

Cardiorespiratory Fitness     
VO2 Peak, mL·kg-1·min-1 36.5 (31.9-41.0) 60.6 (55.0-66.2) *  32.6 (26.6-38.6) 50.7 (47.0-54.4) † 
VO2 Peak, % Predicted 86 (82-103) 116 (116-141) * 106 (87-129)  143 (129-155) † 

Training History      
Exercise per week, miles  65 (56-73)  34 (28-39) 
Training history, years  8 (5-11)  29 (28-40) 

Data are presented as mean (95% Confidence Intervals). Symbols represent significant between-group differences (P<0.05), * = 
Young runner vs. Young non-runner; † = Middle-aged runner vs. middle-aged non-runner. 
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  604 
Table 2 - Resting Haemodynamics and Basal Sympathetic Nervous System Activity 
 
 Young Middle-aged 
 non-runners 

(n = 10) 
runners 
(n = 13) 

non-runners  
(n = 10) 

runners 
(n = 13) 

Central Artery Stiffness     
      aPWV, m·s-1 5.8 (5.2-6.3) 5.1 (4.8-5.3) * 7.5 (6.9-8.1) 6.8 (6.2-7.3) † 
      β stiffness index 2.96 (2.52-3.40) 2.38 (2.03-2.74) 5.06 (3.94-6.19) 4.06 (3.25-4.88) † 
Haemodynamics     

Heart rate, beats·min-1 64 (57-70) 45 (41-48) * 56 (49-62) 43 (38-47) † 
Stroke volume, ml 61 (57-64) 92 (87-97) * 62 (56-68)  70 (63-77) † 
Cardiac output, L·min-1  3.8 (3.5-4.2) 4.1 (3.8-4.4) 3.4 (3.0-3.8) 3.0 (2.6-3.3) 
TPR, mmHg·L·min-1 24.3 (21.2-27.4) 21.3 (19.2-23.3) 29.1 (26.8-31.3) 31.6 (28.4-34.7) 
MAP, mmHg 90 (83-97) 84 (81-88) 95 (89-101) 93 (90-96) 
Respiration rate, breaths·min-1 13 (10-15) 15 (14-16) 11 (9-13) 12 (10-14) 

Muscle Sympathetic Nerve Activity     
 Burst Frequency, bursts·min-1 18 (12-23) 16 (10-21) 28 (19-38) 31 (27-34) 

      Burst Incidence, bursts·100hb-1 27 (19-36) 36 (23-50)  50 (33-66)   72 (63-81) † 
Data are presented as mean (95% Confidence Intervals). Symbols represent significant between-group differences 
(P<0.05), * = Young runner vs. Young non-runner; † = Middle-aged runner vs. middle-aged non-runner.   
Note: We were unable to quantify β stiffness index in one young non-runner and one young runner; accordingly, data are 
reported for forty-four individuals. Furthermore, stroke volume was unobtainable for one middle-aged runner. Accordingly, 
stroke volume, Q and TPR data are reported in forty-five individuals. 
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Table 3 – Cardiovagal baroreflex gain and the number of sequences for positive and negative pressure ramps  
 Young Middle-aged 
 non-runners 

(n = 10) 
runners 
(n = 11) 

non-runners 
 (n = 9) 

runners 
(n = 13) 

‘Up’ Gain (ms·mmHg-1)  31 (23-39) 41 (27-55) 28 (18-37) 34 (25-44) 
# sequences 20 (12-29) 8 (5-11) 17 (10-24) 11 (8-16) 

‘Down’ Gain (ms·mmHg-1) 24 (17-32) 33 (22-45) 23 (14-32) 33 (22-45) 
 # sequences  30 (20-39) 9 (6-12) 20 (13-26) 13 (8-19) 

Data are presented as mean (95% Confidence Intervals).  
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Figure Legends 609 

 610 

Figure 1 Example recordings of muscle sympathetic nerve activity and blood pressure during supine rest. 20 seconds of resting muscle sympathetic 611 
nerve activity (MSNA) and blood pressure (BP) data are shown from one representative participant per group: (A) Middle-aged runner; (B) Middle-aged non-612 
runner; (C) Young runner; (D) Young non-runner.  613 

 614 

Figure 2 Sympathetic and cardiac baroreflex function. (A) Group mean regressions between diastolic blood pressure (DBP) and muscle sympathetic 615 
nerve activity (MSNA) are presented with the sympathetic operating points superimposed on the regression lines. Middle-age runners had similar operating 616 
DBP compared to middle-aged non-runners but the corresponding level of MSNA was higher (by 22 bursts·100hb-1; red arrow), despite similar sympathetic 617 
baroreflex gain. However, in young men training status had no influence on the operating DBP, corresponding level of MSNA or sympathetic baroreflex gain. 618 
(B) Group mean regressions between systolic blood pressure (SBP) and R-R interval (sequence method) are shown with the operating points of the cardiac 619 
baroreflex overlaid on the regression lines. Middle-aged runners had similar operating SBP and cardiovagal  baroreflex gain (33.6 [24.5-42.8] vs 25.5 [16.2-620 
34.7], P=0.16) compared to middle-aged non-runners, but the corresponding R-R interval was longer (by 352 msec; red arrow). In contrast, when compared 621 
to young non-runners, the operating SBP was set leftward (by 9 mmHg; green dashed arrow) in young runners with a longer corresponding R-R interval (by 622 
418 msec; green solid arrow), despite similar cardiac baroreflex gain (37.2 [28.1-46.3] vs 26.4 [19.1-33.8], P=0.06). Abbreviations: M, Middle-aged non-623 
runners; MR, Middle-aged runner; Y, Young non-runner; YR, Young runner. NB: Baroreflex responsiveness data are presented from: 10 young non-runners, 624 
11 young runners, 9 middle-aged non-runners, 11 middle-aged runners. 625 

 626 
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