33 research outputs found

    Effect of early intervention for early-stage psychotic disorders on suicidal behaviours – a systematic review protocol

    Get PDF
    BackgroundThe early stages of psychotic disorders correspond to the early phases of the disease and include the prodromal phase and first-episode psychosis; they constitute a period at high risk of suicidal behaviour. A long duration of untreated psychosis (DUP) is among the risk factors of suicidal behaviour identified in this early period. Many studies have shown the effectiveness of early interventions on the overall prognosis of psychotic disorders in the early stages, and early intervention strategies have been developed and tested worldwide. Several authors reported an improvement in suicidal behaviours; however, all these data have not been systematically analysed yet. The main objective of this systematic review was to collect evidence on the effect on suicidal behaviour of early interventions for patients in the early stages of psychotic disorders.MethodsWe will carry out a systematic review of the literature according to the PRISMA criteria by searching articles in five databases (PubMed, Cochrane, PsycINFO, Scopus, EMBASE), without restriction on the publication date. The selection criteria are: articles (any type; e.g. prospective, retrospective, controlled or uncontrolled, and literature reviews) on early interventions for psychotic disorders in the early stages with data on suicide attempts, death by suicide, suicidal ideation; articles written in English or French. Exclusion criteria are: articles on suicidal behaviours in patients with psychotic disorders in the early stages, but without early intervention, and articles on early-stage psychotic disorders without data on suicidal behaviours.DiscussionIf this review confirms the effectiveness on suicidal behaviours of early interventions for young patients with psychotic disorders, the development/implementation of such intervention programmes should be better promoted.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42021237833

    Inferring pandemic growth rates from sequence data

    Get PDF
    Using sequence data to infer population dynamics is playing an increasing role in the analysis of outbreaks. The most common methods in use, based on coalescent inference, have been widely used but not extensively tested against simulated epidemics. Here, we use simulated data to test the ability of both parametric and non-parametric methods for inference of effective population size (coded in the popular BEAST package) to reconstruct epidemic dynamics. We consider a range of simulations centred on scenarios considered plausible for pandemic influenza, but our conclusions are generic for any exponentially growing epidemic. We highlight systematic biases in non-parametric effective population size estimation. The most prominent such bias leads to the false inference of slowing of epidemic spread in the recent past even when the real epidemic is growing exponentially. We suggest some sampling strategies that could reduce (but not eliminate) some of the biases. Parametric methods can correct for these biases if the infected population size is large. We also explore how some poor sampling strategies (e.g. that over-represent epidemiologically linked clusters of cases) could dramatically exacerbate bias in an uncontrolled manner. Finally, we present a simple diagnostic indicator, based on coalescent density and which can easily be applied to reconstructed phylogenies, that identifies time-periods for which effective population size estimates are less likely to be biased. We illustrate this with an application to the 2009 H1N1 pandemic

    The Genealogical Population Dynamics of HIV-1 in a Large Transmission Chain:Bridging within and among Host Evolutionary Rates

    Get PDF
    Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the 'store and retrieve' hypothesis positing that viruses stored early in latently infected cells preferentially transmit or establish new infections upon reactivation.status: publishe

    Simple Epidemiological Dynamics Explain Phylogenetic Clustering of HIV from Patients with Recent Infection

    Get PDF
    Phylogenies of highly genetically variable viruses such as HIV-1 are potentially informative of epidemiological dynamics. Several studies have demonstrated the presence of clusters of highly related HIV-1 sequences, particularly among recently HIV-infected individuals, which have been used to argue for a high transmission rate during acute infection. Using a large set of HIV-1 subtype B pol sequences collected from men who have sex with men, we demonstrate that virus from recent infections tend to be phylogenetically clustered at a greater rate than virus from patients with chronic infection (‘excess clustering’) and also tend to cluster with other recent HIV infections rather than chronic, established infections (‘excess co-clustering’), consistent with previous reports. To determine the role that a higher infectivity during acute infection may play in excess clustering and co-clustering, we developed a simple model of HIV infection that incorporates an early period of intensified transmission, and explicitly considers the dynamics of phylogenetic clusters alongside the dynamics of acute and chronic infected cases. We explored the potential for clustering statistics to be used for inference of acute stage transmission rates and found that no single statistic explains very much variance in parameters controlling acute stage transmission rates. We demonstrate that high transmission rates during the acute stage is not the main cause of excess clustering of virus from patients with early/acute infection compared to chronic infection, which may simply reflect the shorter time since transmission in acute infection. Higher transmission during acute infection can result in excess co-clustering of sequences, while the extent of clustering observed is most sensitive to the fraction of infections sampled

    Modeling HIV-1 Drug Resistance as Episodic Directional Selection

    Get PDF
    The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance

    Bayesian Phylogeography Finds Its Roots

    Get PDF
    As a key factor in endemic and epidemic dynamics, the geographical distribution of viruses has been frequently interpreted in the light of their genetic histories. Unfortunately, inference of historical dispersal or migration patterns of viruses has mainly been restricted to model-free heuristic approaches that provide little insight into the temporal setting of the spatial dynamics. The introduction of probabilistic models of evolution, however, offers unique opportunities to engage in this statistical endeavor. Here we introduce a Bayesian framework for inference, visualization and hypothesis testing of phylogeographic history. By implementing character mapping in a Bayesian software that samples time-scaled phylogenies, we enable the reconstruction of timed viral dispersal patterns while accommodating phylogenetic uncertainty. Standard Markov model inference is extended with a stochastic search variable selection procedure that identifies the parsimonious descriptions of the diffusion process. In addition, we propose priors that can incorporate geographical sampling distributions or characterize alternative hypotheses about the spatial dynamics. To visualize the spatial and temporal information, we summarize inferences using virtual globe software. We describe how Bayesian phylogeography compares with previous parsimony analysis in the investigation of the influenza A H5N1 origin and H5N1 epidemiological linkage among sampling localities. Analysis of rabies in West African dog populations reveals how virus diffusion may enable endemic maintenance through continuous epidemic cycles. From these analyses, we conclude that our phylogeographic framework will make an important asset in molecular epidemiology that can be easily generalized to infer biogeogeography from genetic data for many organisms

    Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks

    Get PDF
    These authors contributed equally: Alpha K. Keita, Fara R. Koundouno, Martin Faye, Ariane Düx, Julia Hinzmann.International audienc

    Genomic assessment of invasion dynamics of SARS-CoV-2 Omicron BA.1

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) now arise in the context of heterogeneous human connectivity and population immunity. Through a large-scale phylodynamic analysis of 115,622 Omicron BA.1 genomes, we identified >6,000 introductions of the antigenically distinct VOC into England and analyzed their local transmission and dispersal history. We find that six of the eight largest English Omicron lineages were already transmitting when Omicron was first reported in southern Africa (22 November 2021). Multiple datasets show that importation of Omicron continued despite subsequent restrictions on travel from southern Africa as a result of export from well-connected secondary locations. Initiation and dispersal of Omicron transmission lineages in England was a two-stage process that can be explained by models of the country’s human geography and hierarchical travel network. Our results enable a comparison of the processes that drive the invasion of Omicron and other VOCs across multiple spatial scales

    Virus genomes reveal factors that spread and sustained the Ebola epidemic.

    Get PDF
    The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics
    corecore