2,207 research outputs found

    Unfinished Business: Latino and Other Faculty Diversity in the SUNY System

    Get PDF
    The main goal of this report is to document and assess the hiring and retention of Latino faculty, from all the different combined nationalities that fall within this particular U.S. Census rubric,at the selected sample of SUNY institutions. This is doneby rank and (where possible) by gender, beginning between 2000 and 2002 and ending either in 2009 or 2010 (depending upon the campus). Much of this data is compared tothat for African American, Asian, and non-Latino white faculty categories at the same SUNY institutions. This research project includes some recommendations aimed at improving current recruitment practices and the “unfinished business” of implementing campus diversity policies that produce more palpable results in increasing Latino and other faculty from underrepresented groups

    Evaluation: Perspectives of Students and Graduates

    Full text link
    Women\u27s studies, now in its second phase, is making its presence felt within institutions, developing a new curriculum, and building a new body of intellectual knowledge. Women\u27s studies\u27 original purpose continues: to change the sexist and other biased values, practices, and structures within and outside traditional educational spheres. How much change has occurred? Impact within colleges, high schools, and women\u27s centers is easier to judge than effect in other arenas . Outside educational institutions, impact may be observed through two channels: first, the ties which programs explicitly make with community groups; second, students who graduate and choose not to continue their formal education. Although we assume that students are changed by their women\u27s studies experience, we often do not know what happens to them after leaving. Do they become involved in social change? Or do they feel their education has not influenced what they are now doing? The answers to these questions measure the strengths and deficiencies of women\u27s studies and provide one solid basis on which to build the curriculum during its second phase

    High atmospheric carbon dioxide-dependent alleviation of salt stress is linked to RESPIRATORY BURST OXIDASE 1 (RBOH1)-dependent H2O2 production in tomato (Solanum lycopersicum)

    Get PDF
    Plants acclimate rapidly to stressful environmental conditions. Increasing atmospheric CO2 levels are predicted to influence tolerance to stresses such as soil salinity but the mechanisms are poorly understood. To resolve this issue, tomato (Solanum lycopersicum) plants were grown under ambient (380 μmol mol–1) or high (760 μmol mol–1) CO2 in the absence or presence of sodium chloride (100 mM). The higher atmospheric CO2 level induced the expression of RESPIRATORY BURST OXIDASE 1 (SlRBOH1) and enhanced H2O2 accumulation in the vascular cells of roots, stems, leaf petioles, and the leaf apoplast. Plants grown with higher CO2 levels showed improved salt tolerance, together with decreased leaf transpiration rates and lower sodium concentrations in the xylem sap, vascular tissues, and leaves. Silencing SlRBOH1 abolished high CO2 -induced salt tolerance and increased leaf transpiration rates, as well as enhancing Na+ accumulation in the plants. The higher atmospheric CO2 level increased the abundance of a subset of transcripts involved in Na+ homeostasis in the controls but not in the SlRBOH1-silenced plants. It is concluded that high atmospheric CO2 concentrations increase salt stress tolerance in an apoplastic H2O2 dependent manner, by suppressing transpiration and hence Na+ delivery from the roots to the shoots, leading to decreased leaf Na+ accumulation

    Binding of Soluble Yeast β-Glucan to Human Neutrophils and Monocytes is Complement-Dependent

    Get PDF
    The immunomodulatory properties of yeast β-1,3/1,6 glucans are mediated through their ability to be recognized by human innate immune cells. While several studies have investigated binding of opsonized and unopsonized particulate β-glucans to human immune cells mainly via complement receptor 3 (CR3) or Dectin-1, few have focused on understanding the binding characteristics of soluble β-glucans. Using a well-characterized, pharmaceutical grade, soluble yeast β-glucan, this study evaluated and characterized the binding of soluble β-glucan to human neutrophils and monocytes. The results demonstrated that soluble β-glucan bound to both human neutrophils and monocytes in a concentration-dependent and receptor-specific manner. Antibodies blocking the CD11b and CD18 chains of CR3 significantly inhibited binding to both cell types, establishing CR3 as the key receptor recognizing the soluble β-glucan in these cells. Binding of soluble β-glucan to human neutrophils and monocytes required serum and was also dependent on incubation time and temperature, strongly suggesting that binding was complement-mediated. Indeed, binding was reduced in heat-inactivated serum, or in serum treated with methylamine or in serum reacted with the C3-specific inhibitor compstatin. Opsonization of soluble β-glucan was demonstrated by detection of iC3b, the complement opsonin on β-glucan-bound cells, as well as by the direct binding of iC3b to β-glucan in the absence of cells. Binding of β-glucan to cells was partially inhibited by blockade of the alternative pathway of complement, suggesting that the C3 activation amplification step mediated by this pathway also contributed to binding

    Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium.

    Get PDF
    Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions

    Effects of handling and short-term captivity: a multi-behaviour approach using red sea urchins, Mesocentrotus franciscanus

    Get PDF
    Understanding the effects of captivity-induced stress on wild-caught animals after their release back into the wild is critical for the long-term success of relocation and reintroduction programs. To date, most of the research on captivity stress has focused on vertebrates, with far less attention paid to invertebrates. Here, we examine the effect of short-term captivity (i.e., up to four days) on self-righting, aggregation, and predator-escape behaviours in wild-caught red sea urchins, Mesocentrotus franciscanus, after their release back into the wild. Aggregation behaviour, which has been linked to feeding in sea urchins, was not affected by handling or captivity. In contrast, the sea urchins that had been handled and released immediately, as well as those that were handled and held captive, took longer to right themselves and were poorer at fleeing from predators than wild, unhandled sea urchins. These results indicate that handling rather than captivity impaired these behaviours in the short term. The duration of captivity did not influence the sea urchin behaviours examined. Longer-term monitoring is needed to establish what the fitness consequences of these short-term behavioural changes might be. Our study nevertheless highlights the importance of considering a suite of responses when examining the effects of capture and captivity. Our findings, which are based on a locally abundant species, can inform translocation efforts aimed at bolstering populations of ecologically similar but depleted invertebrate species to retain or restore important ecosystem functions

    Structure and lithology of the Japan Trench subduction plate boundary fault

    Get PDF
    The 2011 Mw9.0 Tohoku-oki earthquake ruptured to the trench with maximum coseismic slip located on the shallow portion of the plate boundary fault. To investigate the conditions and physical processes that promoted slip to the trench, Integrated Ocean Drilling Program Expedition 343/343T sailed 1 year after the earthquake and drilled into the plate boundary ∼7 km landward of the trench, in the region of maximum slip. Core analyses show that the plate boundary décollement is localized onto an interval of smectite-rich, pelagic clay. Subsidiary structures are present in both the upper and lower plates, which define a fault zone ∼5–15m thick. Fault rocks recovered from within the clay-rich interval contain a pervasive scaly fabric defined by anastomosing, polished, and lineated surfaces with two predominant orientations. The scaly fabric is crosscut in several places by discrete contacts across which the scaly fabric is truncated and rotated, or different rocks are juxtaposed. These contacts are inferred to be faults. The plate boundary décollement therefore contains structures resulting from both distributed and localized deformation. We infer that the formation of both of these types of structures is controlled by the frictional properties of the clay: the distributed scaly fabric formed at low strain rates associated with velocity-strengthening frictional behavior, and the localized faults formed at high strain rates characterized by velocity-weakening behavior. The presence of multiple discrete faults resulting from seismic slip within the décollement suggests that rupture to the trench may be characteristic of this margin

    Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis

    Get PDF
    Objective: structural brain imaging studies in obsessive compulsive disorder (OCD) have produced inconsistent findings. This may be partially due to limited statistical power from relatively small samples and clinical heterogeneity related to variation in illness profile and developmental stage. To address these limitations, the authors conducted meta and mega-analyses of data from OCD sites worldwide. Method: T-1 images from 1,830 OCD patients and 1,759 control subjects were analyzed, using coordinated and standardized processing, to identify subcortical brain volumes that differ between OCD patients and healthy subjects. The authors performed a meta analysis on the mean of the left and right hemisphere measures of each subcortical structure, and they performed a mega-analysis by pooling these volumetric measurements from each site. The authors additionally examined potential modulating effects of clinical characteristics on morphological differences in OCD patients. Results: the meta-analysis indicated that adult patients had significantly smaller hippocampal volumes (Cohen's d=-0.13; % difference=-2.80) and larger pallidum volumes (d=0.16; % difference=3.16) compared with adult controls. Both effects were stronger in medicated patients compared with controls (d=-0.29, % difference=-4.18, and d=0.29, % difference=4.38, respectively). Unmedicated pediatric patients had significantly larger thalamic volumes (d=0.38, % difference=3.08) compared with pediatric controls. None of these findings were mediated by sample characteristics, such as mean age or scanning field strength. The mega-analysis yielded similar results. Conclusions: the results indicate different patterns of sub cortical abnormalities in pediatric and adult OCD patients. The patlidum and hippocampus seem to be of importance in adult OCD, whereas the thalamus seems to be key in pediatric OCD. These findings highlight the potential importance of neurodevelopmental alterations in OCD and suggest that further research on neuroplasticity in OCD may be useful

    An overview of the first 5 years of the ENIGMA obsessive-compulsive disorder working group: The power of worldwide collaboration

    Get PDF
    Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive-compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA
    corecore