9 research outputs found
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
Background We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15â20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified inâ~â80% of cases.
Methods We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.
Results No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5â528.7, Pâ=â1.1âĂâ10â4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (ORâ=â3.70[95%CI 1.3â8.2], Pâ=â2.1âĂâ10â4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (ORâ=â19.65[95%CI 2.1â2635.4], Pâ=â3.4âĂâ10â3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (ORâ=â4.40[9%CI 2.3â8.4], Pâ=â7.7âĂâ10â8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]â=â43.3 [20.3] years) than the other patients (56.0 [17.3] years; Pâ=â1.68âĂâ10â5).
Conclusions Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
Prévalence du diabÚte de type 2 et méthodes diagnostiques dans une population d'adolescents obÚses d' Ile de France
Evaluer la prĂ©valence du diabĂšte de type 2 et du prĂ©diabĂšte dans la population d adolescents obĂšses consultant en mĂ©decine de l adolescent et l intĂ©rĂȘt du test d hyperglycĂ©mie provoquĂ©e par voie orale (HGPO) . Etude rĂ©trospective sur 151 adolescents hospitalisĂ©s pour bilan d obĂ©sitĂ© et ayant eu un test d HGPO . La prĂ©valence du diabĂšte de type 2 est de 2 %, celle du prĂ©diabĂšte de 18,5 %. La mesure de la glycĂ©mie Ă jeun seule sous-estime les dysrĂ©gulations glycĂ©miques ; elle manque le diagnostic d un diabĂ©tique sur 3 et de 75 % des prĂ©diabĂ©tiques. Les marqueurs d insulinorĂ©sistance, score HOMA-IR, score Quicki, acanthosis nigricans et insulinĂ©mie Ă jeun sont des tests ayant une bonne sensibilitĂ© dans le dĂ©pistage des dysrĂ©gulations glycĂ©miques (70%) mais une mauvaise spĂ©cificitĂ©. L HGPO est indiquĂ©e chez les adolescents obĂšses dans le cadre du dĂ©pistage des dysrĂ©gulations glycĂ©miques silencieuses.PARIS6-Bibl.PitiĂ©-SalpĂȘtrie (751132101) / SudocSudocFranceF
X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19
Publisher Copyright: Copyright © 2021Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean, 36.7 years) from a cohort of 1202 male patients aged 0.5 to 99 years (mean, 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean, 38.7 years) tested carry such TLR7 variants (P = 3.5 Ă 10â5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n = 2) or moderate (n = 1), severe (n = 1), or critical (n = 1) pneumonia. Two patients from a cohort of 262 male patients with severe COVID-19 pneumonia (mean, 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is <6.5 Ă 10â4. We show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7. The patientsâ blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.Peer reviewe
Recommended from our members
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified inâ~â80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, Pâ=â1.1âĂâ10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (ORâ=â3.70[95%CI 1.3-8.2], Pâ=â2.1âĂâ10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (ORâ=â19.65[95%CI 2.1-2635.4], Pâ=â3.4âĂâ10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (ORâ=â4.40[9%CI 2.3-8.4], Pâ=â7.7âĂâ10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]â=â43.3 [20.3] years) than the other patients (56.0 [17.3] years; Pâ=â1.68âĂâ10-5).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19.
BACKGROUND: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified inâ~â80% of cases.
METHODS: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.
RESULTS: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, Pâ=â1.1âĂâ10
CONCLUSIONS: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
Abstract Background We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15â20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified inâ~â80% of cases. Methods We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5â528.7, Pâ=â1.1âĂâ10â4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (ORâ=â3.70[95%CI 1.3â8.2], Pâ=â2.1âĂâ10â4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (ORâ=â19.65[95%CI 2.1â2635.4], Pâ=â3.4âĂâ10â3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (ORâ=â4.40[9%CI 2.3â8.4], Pâ=â7.7âĂâ10â8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]â=â43.3 [20.3] years) than the other patients (56.0 [17.3] years; Pâ=â1.68âĂâ10â5). Conclusions Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
Correction: Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
International audienc
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old