358 research outputs found

    Hybrid solid state qubits: the powerful role of electron spins

    Full text link
    We review progress on the use of electron spins to store and process quantum information, with particular focus on the ability of the electron spin to interact with multiple quantum degrees of freedom. We examine the benefits of hybrid quantum bits (qubits) in the solid state that are based on coupling electron spins to nuclear spin, electron charge, optical photons, and superconducting qubits. These benefits include the coherent storage of qubits for times exceeding seconds, fast qubit manipulation, single qubit measurement, and scalable methods for entangling spatially separated matter-based qubits. In this way, the key strengths of different physical qubit implementations are brought together, laying the foundation for practical solid-state quantum technologies.Comment: 54 pages, 7 figure

    Bi-exponential modelling of W â€Č reconstitution kinetics in trained cyclists

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-06-21, accepted 2021-12-10, registration 2021-12-11, pub-electronic 2021-12-18, online 2021-12-18, pub-print 2022-03Publication status: PublishedAbstract: Purpose: The aim of this study was to investigate the individual Wâ€Č reconstitution kinetics of trained cyclists following repeated bouts of incremental ramp exercise, and to determine an optimal mathematical model to describe Wâ€Č reconstitution. Methods: Ten trained cyclists (age 41 ± 10 years; mass 73.4 ± 9.9 kg; V˙O2max 58.6 ± 7.1 mL kg min−1) completed three incremental ramps (20 W min−1) to the limit of tolerance with varying recovery durations (15–360 s) on 5–9 occasions. Wâ€Č reconstitution was measured following the first and second recovery periods against which mono-exponential and bi-exponential models were compared with adjusted R2 and bias-corrected Akaike information criterion (AICc). Results: A bi-exponential model outperformed the mono-exponential model of Wâ€Č reconstitution (AICc 30.2 versus 72.2), fitting group mean data well (adjR2 = 0.999) for the first recovery when optimised with parameters of fast component (FC) amplitude = 50.67%; slow component (SC) amplitude = 49.33%; time constant (τ)FC = 21.5 s; τSC = 388 s. Following the second recovery, Wâ€Č reconstitution reduced by 9.1 ± 7.3%, at 180 s and 8.2 ± 9.8% at 240 s resulting in an increase in the modelled τSC to 716 s with τFC unchanged. Individual bi-exponential models also fit well (adjR2 = 0.978 ± 0.017) with large individual parameter variations (FC amplitude 47.7 ± 17.8%; first recovery: (τ)FC = 22.0 ± 11.8 s; (τ)SC = 377 ± 100 s; second recovery: (τ)FC = 16.3.0 ± 6.6 s; (τ)SC = 549 ± 226 s). Conclusions: Wâ€Č reconstitution kinetics were best described by a bi-exponential model consisting of distinct fast and slow phases. The amplitudes of the FC and SC remained unchanged with repeated bouts, with a slowing of Wâ€Č reconstitution confined to an increase in the time constant of the slow component

    Giga-Hertz quantized charge pumping in bottom gate defined InAs nanowire quantum dots

    Get PDF
    Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, i.e., the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to 1.3 1.3\,GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, e.g. Majorana modes, by single electron spectroscopy and correlation experiments.Comment: 21 page

    Valley-spin blockade and spin resonance in carbon nanotubes

    Full text link
    Manipulation and readout of spin qubits in quantum dots made in III-V materials successfully rely on Pauli blockade that forbids transitions between spin-triplet and spin-singlet states. Quantum dots in group IV materials have the advantage of avoiding decoherence from the hyperfine interaction by purifying them with only zero-spin nuclei. Complications of group IV materials arise from the valley degeneracies in the electronic bandstructure. These lead to complicated multiplet states even for two-electron quantum dots thereby significantly weakening the selection rules for Pauli blockade. Only recently have spin qubits been realized in silicon devices where the valley degeneracy is lifted by strain and spatial confinement. In carbon nanotubes Pauli blockade can be observed by lifting valley degeneracy through disorder. In clean nanotubes, quantum dots have to be made ultra-small to obtain a large energy difference between the relevant multiplet states. Here we report on low-disorder nanotubes and demonstrate Pauli blockade based on both valley and spin selection rules. We exploit the bandgap of the nanotube to obtain a large level spacing and thereby a robust blockade. Single-electron spin resonance is detected using the blockade.Comment: 31 pages including supplementary informatio

    Terrain, politics, history

    Get PDF
    This article is based on the 2019 Dialogues in Human Geography plenary lecture at the Royal Geographical Society. It has four parts. The first discusses my work on territory in relation to recent work by geographers and others on the vertical, the volumetric, the voluminous, and the milieu as ways of thinking space in three-dimensions, of a fluid and dynamic earth. Second, it proposes using the concept of terrain to analyse the political materiality of territory. Third, it adds some cautions to this, through thinking about the history of the concept of terrain in geographical thought, which has tended to associate it with either physical or military geography. Finally, it suggests that this work is a way geographers might begin to respond to the challenge recently made by Bruno Latour, where he suggests that ‘belonging to a territory is the phenomenon most in need of rethinking and careful redescription; learning new ways to inhabit the Earth is our biggest challenge’. Responding to Latour continues this thinking about the relations between territory, Earth, land, and ground, and their limits

    NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival

    Get PDF
    Transcription factor NRF2 is an important regulator of oxidative stress. It is involved in cancer progression, and has abnormal constitutive expression in acute myeloid leukaemia (AML). Posttranscriptional regulation by microRNAs (miRNAs) can affect the malignant phenotype of AML cells. In this study, we identified and characterised NRF2-regulated miRNAs in AML. An miRNA array identified miRNA expression level changes in response to NRF2 knockdown in AML cells. Further analysis of miRNAs concomitantly regulated by knockdown of the NRF2 inhibitor KEAP1 revealed the major candidate NRF2-mediated miRNAs in AML. We identified miR-125B to be upregulated and miR-29B to be downregulated by NRF2 in AML. Subsequent bioinformatic analysis identified putative NRF2 binding sites upstream of the miR-125B1 coding region and downstream of the mir-29B1 coding region. Chromatin immunoprecipitation analyses showed that NRF2 binds to these antioxidant response elements (AREs) located in the 5â€Č untranslated regions of miR-125B and miR-29B. Finally, primary AML samples transfected with anti-miR-125B antagomiR or miR-29B mimic showed increased cell death responsiveness either alone or co-treated with standard AML chemotherapy. In summary, we find that NRF2 regulation of miR-125B and miR-29B acts to promote leukaemic cell survival, and their manipulation enhances AML responsiveness towards cytotoxic chemotherapeutics

    Infiltration efficiency and subsurface water processes of a sustainable drainage system and consequences to flood management

    Get PDF
    With increased intensity rainfall events globally and urban expansion decreasing permeable surfaces, there is an increasing problem of urban flooding. This study aims to better understand rainfall infiltration into a Sustainable Drainage System (SuDS) permeable pavement, compared with an adjacent Green Area of made ground, in relationship to groundwater levels below both areas. Both areas were instrumented with soil water content and matric potential sensors and four shallow boreholes were instrumented with groundwater level sensors. Surface infiltration rates were measured using a double‐ring infiltrometer. Results showed that average infiltration rates of the SuDS (1,925 mm/hr) were significantly higher than the Green Area (56 mm/hr). The SuDS was well designed to transfer rainfall rapidly to the aquifer below, where groundwater levels rapidly rose within 1 hr of a 1 in 30 year event (32.8 mm/hr). In comparison, soil compaction of the made ground Green Area decreased infiltration rates, but still enabled the majority of rainfall events to infiltrate. The aquifer below the Green Area responded more slowly, as lower matrix potentials facilitated water retention in the soil profile, slowing water draining to the aquifer. This work reiterates the importance of ensuring a 1 m separation depth between the base of the SuDS infiltration zone and aquifer depth
    • 

    corecore