8,335 research outputs found

    Critical velocity for superfluid flow across the BEC-BCS crossover

    Full text link
    Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most robust for resonant atomic interactions. Critical velocities were determined from the abrupt onset of dissipation when the velocity of a moving one dimensional optical lattice was varied. The dependence of the critical velocity on lattice depth and on the inhomogeneous density profile was studied

    Coupled valence and spin state transition in (Pr0.7Sm0.3)0.7Ca0.3CoO3

    Full text link
    The coupled valence and spin state transition (VSST) taking place in (Pr0.7Sm0.3)0.7Ca0.3CoO3 was investigated by soft x-ray absorption spectroscopy (XAS) experiments carried out at the Pr-M4,5, Co-L2,3, and O-1s edges. This VSST is found to be composed of a sharp Pr/Co valence and Co spin state transition centered at T*=89.3 K, followed by a smoother Co spin-state evolution at higher temperatures. At T < T*, we found that the praseodymium displays a mixed valence Pr3+/Pr4+ with about 0.13 Pr4+/f.u., while all the Co3+ is in the low-spin (LS) state. At T around T*, the sharp valence transition converts all the Pr4+ to Pr3+ with a corresponding Co3+ to Co4+ compensation. This is accompanied by an equally sharp spin state transition of the Co3+ from the low to an incoherent mixture of low and high spin (HS) states. An involvement of the intermediate spin (IS) state can be discarded for the Co3+. While above T* and at high temperatures the system shares rather similar properties as Sr-doped LaCoO3, at low temperatures it behaves much more like EuCoO3 with its highly stable LS configuration for the Co3+. Apparently, the mechanism responsible for the formation of Pr4+ at low temperatures also helps to stabilize the Co3+ in the LS configuration despite the presence of Co4+ ions. We also found out that that the Co4+ is in an IS state over the entire temperature range investigated in this study (10-290 K). The presence of Co3+ HS and Co4+ IS at elevated temperatures facilitates the conductivity of the material.Comment: 19 pages, 7 figures, Accepted in PR

    The detection of extragalactic 15^{15}N: Consequences for nitrogen nucleosynthesis and chemical evolution

    Full text link
    Detections of extragalactic 15^{15}N are reported from observations of the rare hydrogen cyanide isotope HC15^{15}N toward the Large Magellanic Cloud (LMC) and the core of the (post-) starburst galaxy NGC 4945. Accounting for optical depth effects, the LMC data from the massive star-forming region N113 infer a 14N/15^{14}N/^{15}N ratio of 111 ±\pm 17, about twice the 12C/13^{12}C/^{13}C value. For the LMC star-forming region N159HW and for the central region of NGC 4945, 14N/15^{14}N/^{15}N ratios are also \approx 100. The 14N/15^{14}N/^{15}N ratios are smaller than all interstellar nitrogen isotope ratios measured in the disk and center of the Milky Way, strongly supporting the idea that 15^{15}N is predominantly of `primary' nature, with massive stars being its dominant source. Although this appears to be in contradiction with standard stellar evolution and nucleosynthesis calculations, it supports recent findings of abundant 15^{15}N production due to rotationally induced mixing of protons into the helium-burning shells of massive stars.Comment: 15 pages including one postscript figure, accepted for publication by ApJ Letter, further comments: please contact Yi-nan Chi

    Analytical and experimental study of stratification and liquid-ullage coupling, 1 June 1964 - 31 May 1965

    Get PDF
    Closed-form solution for stratification of subcooled fluids in containers subjected to heating, and for liquid-ullage vapor couplin

    The 6-vertex model of hydrogen-bonded crystals with bond defects

    Full text link
    It is shown that the percolation model of hydrogen-bonded crystals, which is a 6-vertex model with bond defects, is completely equivalent with an 8-vertex model in an external electric field. Using this equivalence we solve exactly a particular 6-vertex model with bond defects. The general solution for the Bethe-like lattice is also analyzed.Comment: 13 pages, 6 figures; added references for section

    Anharmonicity Induced Resonances for Ultracold Atoms and their Detection

    Full text link
    When two atoms interact in the presence of an anharmonic potential, such as an optical lattice, the center of mass motion cannot be separated from the relative motion. In addition to generating a confinement-induced resonance (or shifting the position of an existing Feshbach resonance), the external potential changes the resonance picture qualitatively by introducing new resonances where molecular excited center of mass states cross the scattering threshold. We demonstrate the existence of these resonances, give their quantitative characterization in an optical superlattice, and propose an experimental scheme to detect them through controlled sweeping of the magnetic field.Comment: 6 pages, 5 figures; expanded presentatio

    Abundances and Isotope Ratios in the Magellanic Clouds: The Star Forming Environment of N113

    Full text link
    With the goal of deriving the physical and chemical conditions of star forming regions in the Large Magellanic Cloud (LMC), a spectral line survey of the prominent star forming region N113 is presented. The observations cover parts of the frequency range from 85 GHz to 357 GHz and include 63 molecular transitions from a total of 16 species, among them spectra of rare isotopologues. Maps of selected molecular lines as well as the 1.2 mm continuum distribution are also presented. Molecular abundances in the core of the complex are found to be consistent with a photon dominated region (PDR) that is nitrogen deficient, with the potential exception of N2H+. Densities range from 5x10^3 cm-3 for CO to almost 10^6 for CS and HCN, indicating that only the densest regions provide sufficient shielding even for some of the most common species. An ortho- to para-H_2CO ratio of ~3 hints at H_2CO formation in a warm (>=40 K) environment. Isotope ratios are 12C/13C ~ 49+-5, 16O/18O ~ 2000+-250, 18O/17O ~ 1.7+-0.2 and 32S/34S ~ 15. Agreement with data from other star forming clouds shows that the gas is well mixed in the LMC . The isotope ratios do not only differ from those seen in the Galaxy. They also do not form a continuation of the trends observed with decreasing metallicity from the inner to the outer Galaxy. This implies that the outer Galaxy, is not providing a transition zone between the inner Galaxy and the metal poor environment of the Magellanic Clouds. A part of this discrepancy is likely caused by differences in the age of the stellar populations in the outer Galaxy and the LMC.Comment: 50 pages, 13 figures, accepted for publication in Ap
    corecore