344 research outputs found
Upregulation of Aquaporin-3 Is Involved in Keratinocyte Proliferation and Epidermal Hyperplasia
Aquaporin-3 (AQP3) is a water/glycerol-transporting protein expressed in keratinocytes of the epidermis. We previously showed that AQP3-mediated transport of water and glycerol is involved in keratinocyte migration and proliferation, respectively. However, the involvement of AQP3 in epidermal hyperplasia in skin diseases, such as atopic dermatitis (AD), is unknown. In this study, we found significantly increased AQP3 transcript and protein expression in the epidermis of human AD lesions. The upregulation of AQP3 expression in human keratinocytes by transfection with human AQP3 DNA plasmid was associated with increased cellular glycerol and ATP, as well as increased cell proliferation. Among several cytokines and chemokines produced in the skin, CCL17, which is highly expressed in AD, was found to be a strong inducer of AQP3 expression and enhanced keratinocyte proliferation. In mouse AD models, AQP3 was strongly overexpressed in the epidermis in wild-type mice. Epidermal hyperplasia was reduced in AQP3-deficient mice, with a decreased number of proliferating keratinocytes. These results suggest the involvement of AQP3 in epidermal hyperplasia by a mechanism involving upregulated AQP3 expression and consequent enhancement of keratinocyte proliferation
Baby MIND Experiment Construction Status
Baby MIND is a magnetized iron neutrino detector, with novel design features,
and is planned to serve as a downstream magnetized muon spectrometer for the
WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main
goals of this experiment is to reduce systematic uncertainties relevant to
CP-violation searches, by measuring the neutrino contamination in the
anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at
CERN, and is planned to be operational in Japan in October 2017.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). 4
pages, LaTeX, 7 figure
Synchronization of the Distributed Readout Frontend Electronics of the Baby MIND Detector
Baby MIND is a new downstream muon range detector for the WGASCI experiment. This article discusses the distributed readout system and its timing requirements. The paper presents the design of the synchronization subsystem and the results of its test
Baby MIND: A magnetised spectrometer for the WAGASCI experiment
The WAGASCI experiment being built at the J-PARC neutrino beam line will
measure the difference in cross sections from neutrinos interacting with a
water and scintillator targets, in order to constrain neutrino cross sections,
essential for the T2K neutrino oscillation measurements. A prototype Magnetised
Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN
to act as a magnetic spectrometer behind the main WAGASCI target to be able to
measure the charge and momentum of the outgoing muon from neutrino charged
current interactions.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). Title +
4 pages, LaTeX, 6 figure
Baby MIND: A magnetized segmented neutrino detector for the WAGASCI experiment
T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan
designed to study various parameters of neutrino oscillations. A near detector
complex (ND280) is located 280~m downstream of the production target and
measures neutrino beam parameters before any oscillations occur. ND280's
measurements are used to predict the number and spectra of neutrinos in the
Super-Kamiokande detector at the distance of 295~km. The difference in the
target material between the far (water) and near (scintillator, hydrocarbon)
detectors leads to the main non-cancelling systematic uncertainty for the
oscillation analysis. In order to reduce this uncertainty a new
WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized
iron neutrino detector (Baby MIND) will be used to measure momentum and charge
identification of the outgoing muons from charged current interactions. The
Baby MIND modules are composed of magnetized iron plates and long plastic
scintillator bars read out at the both ends with wavelength shifting fibers and
silicon photomultipliers. The front-end electronics board has been developed to
perform the readout and digitization of the signals from the scintillator bars.
Detector elements were tested with cosmic rays and in the PS beam at CERN. The
obtained results are presented in this paper.Comment: In new version: modified both plots of Fig.1 and added one sentence
in the introduction part explaining Baby MIND role in WAGASCI experiment,
added information for the affiliation
Sphingosine 1-phosphate modulates antigen capture by murine langerhans cells via the S1P2 receptor subtype
Dendritic cells (DCs) play a pivotal role in the development of cutaneous contact hypersensitivity (CHS) and atopic dermatitis as they capture and process antigen and present it to T lymphocytes in the lymphoid organs. Recently, it has been indicated that a topical application of the sphingolipid sphingosine 1-phosphate (S1P) prevents the inflammatory response in CHS, but the molecular mechanism is not fully elucidated. Here we indicate that treatment of mice with S1P is connected with an impaired antigen uptake by Langerhans cells (LCs), the initial step of CHS. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Our results indicate that S1P inhibits macropinocytosis of the murine LC line XS52 via S1P2 receptor stimulation followed by a reduced phosphatidylinositol 3-kinase (PI3K) activity. As down-regulation of S1P2 not only diminished S1P-mediated action but also enhanced the basal activity of LCs on antigen capture, an autocrine action of S1P has been assumed. Actually, S1P is continuously produced by LCs and secreted via the ATP binding cassette transporter ABCC1 to the extracellular environment. Consequently, inhibition of ABCC1, which decreased extracellular S1P levels, markedly increased the antigen uptake by LCs. Moreover, stimulation of sphingosine kinase activity, the crucial enzyme for S1P formation, is connected not only with enhanced S1P levels but also with diminished antigen capture. These results indicate that S1P is essential in LC homeostasis and influences skin immunity. This is of importance as previous reports suggested an alteration of S1P levels in atopic skin lesions
Measurement of and charged current inclusive cross sections and their ratio with the T2K off-axis near detector
We report a measurement of cross section and the first measurements of the cross section
and their ratio
at (anti-)neutrino energies below 1.5
GeV. We determine the single momentum bin cross section measurements, averaged
over the T2K -flux, for the detector target material (mainly
Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory
frame kinematics of 500 MeV/c. The
results are and $\sigma(\nu)=\left( 2.41\
\pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}^{2}R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)=
0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 pi(0) detector
10 pages, 6 figures, Submitted to PRDhttp://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.112010© 2015 American Physical Society11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PR
- …