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Aquaporin-3 (AQP3) is a water/glycerol-transporting protein expressed in keratinocytes of the epidermis. We
previously showed that AQP3-mediated transport of water and glycerol is involved in keratinocyte migration
and proliferation, respectively. However, the involvement of AQP3 in epidermal hyperplasia in skin diseases,
such as atopic dermatitis (AD), is unknown. In this study, we found significantly increased AQP3 transcript and
protein expression in the epidermis of human AD lesions. The upregulation of AQP3 expression in human
keratinocytes by transfection with human AQP3 DNA plasmid was associated with increased cellular glycerol
and ATP, as well as increased cell proliferation. Among several cytokines and chemokines produced in the skin,
CCL17, which is highly expressed in AD, was found to be a strong inducer of AQP3 expression and enhanced
keratinocyte proliferation. In mouse AD models, AQP3 was strongly overexpressed in the epidermis in wild-type
mice. Epidermal hyperplasia was reduced in AQP3-deficient mice, with a decreased number of proliferating
keratinocytes. These results suggest the involvement of AQP3 in epidermal hyperplasia by a mechanism
involving upregulated AQP3 expression and consequent enhancement of keratinocyte proliferation.
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INTRODUCTION
The aquaporins (AQPs, named AQP0–12) are a family of
transmembrane channels that transport water, and in some
cases small solutes such as glycerol (Carbrey and Agre, 2009;
Verkman, 2009). AQP3 is one such water/glycerol-transporting
protein, which is expressed in keratinocytes of the epidermis
(Ma et al., 2002). Our previous studies using AQP3 knockout
mice and human keratinocytes showed that AQP3-mediated
water and glycerol transport is involved in keratinocyte
migration and proliferation, respectively, which were impli-
cated to have important roles in cutaneous wound healing
and tumorigenesis (Hara-Chikuma and Verkman, 2008a, b).
We have also shown that AQP3 deficiency has little effect on
differentiation markers in human keratinocytes, suggesting
that AQP3 is not involved in keratinocyte differentiation
(Hara-Chikuma et al., 2009). Previous conflicting studies had
suggested that AQP3 is involved in early differentiation, but not
in proliferation, of keratinocytes (Zheng and Bollag, 2003;
Bollag et al., 2007).

The development and maintenance of the mature epidermis
rely on balanced keratinocyte proliferation and terminal
differentiation. Hyperproliferation and disturbed differentiation
are associated with certain pathological conditions, such as
atopic dermatitis (AD), ichthyosis, and psoriasis (Fuchs and
Raghavan, 2002; Jensen et al., 2004). With regard to keratino-
cyte proliferation, multiple studies have shown that several
growth factors and cytokines, including tumor necrosis factor-a
(TNF-a), IFN-g, IL-1, and GM-CSF, are involved in the growth
of keratinocyte in skin disorders, such as epidermal barrier
disruption and wound healing (Wood et al., 1992; Segre, 2006;
Barrientos et al., 2008). Recent studies have revealed that both
IL-21 and IL-23 mediate keratinocyte proliferation and epidermal
hyperplasia, which was found to be implicated in the
pathogenesis of psoriasis (Chan et al., 2006; Caruso et al., 2009).

The aim of this study was to investigate the hypothesis that
AQP3 upregulation is involved in keratinocyte proliferation
and epidermal hyperplasia in skin disorders. Motivated by the
observation that AQP3 expression was increased in the AD
skin (Olsson et al., 2006), we used human keratinocytes and
murine AD models in AQP3-null mice. We found that
upregulation of AQP3 enhanced proliferation of human
keratinocytes, which was involved in epidermal hyperplasia
during AD development. Our data suggest that AQP3
inhibition by topical agents may be beneficial for the
treatment of epidermal hyperplasia in AD.

RESULTS
Increased epidermal AQP3 expression in human AD

A previous report showed increased AQP3 transcript expres-
sion in the whole skin affected by atopic eczema (Olsson
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et al., 2006). To verify AQP3 protein expression in the
epidermis of AD lesions, we performed immunostaining
with anti-AQP3 antibody. Figure 1a shows remarkably greater
AQP3 protein expression on the plasma membrane of kera-
tinocytes in AD lesions than in the healthy epidermis. AQP3
was broadly distributed throughout the AD lesions. To quantify
AQP3 transcript expression, we isolated the epidermis from
the AD skin (lesion and non-lesion) and assayed AQP3 mRNA
by quantitative reverse transcription-PCR. Figure 1b shows
approximately four-fold increased AQP3 transcript expression
in the epidermis of AD lesions versus controls.

Greater AQP3 expression enhances keratinocyte proliferation

We determined whether increased AQP3 expression could
enhance keratinocyte proliferation. Normal human keratino-
cytes (NHKs) were transfected with either empty vector
or plasmid expressing human AQP3. Figure 2a shows that
transfection of AQP3 plasmid produced at least 3.2-fold
increase in AQP3 mRNA. Immunoblot analysis showed an
approximately six-fold increase in AQP3 protein expression,
with the expected molecular size of 28 kDa (Figure 2a, right).
Keratins 5 and 14, markers of basal proliferating cells, were
significantly increased in AQP3-overexpressing NHKs com-
pared with empty vector-transfected cells (Figure 2b). We
found no significant differences in keratins 1 and 10, markers
of early differentiation. Measurement of cell growth using
the modified MTT assay showed that AQP3 upregulation
enhanced cell growth (Figure 2c). We have previously
proposed that AQP3-facilitated glycerol transport is an impor-
tant determinant of keratinocyte proliferation and cellular
ATP generation (Hara-Chikuma and Verkman, 2008a, b).
Levels of cellular glycerol and ATP were increased in NHKs
with upregulated AQP3 expression (Figure 2d and e). These
findings show that increased AQP3 expression enhances
keratinocyte proliferation.

CCL17 increases AQP3 expression in human keratinocytes

It has been reported that various Th1 and Th2 cytokines/
chemokines are altered in the epidermis in AD, which are
proposed to be involved in epidermal hyperplasia and AD
pathogenesis (Novak et al., 2003). We asked whether

cytokines/chemokines could affect AQP3 expression in
keratinocytes during the development of AD. Human
keratinocytes (HaCaT) were used in this study to examine
the effect of cytokines/chemokines on AQP3 expression,
because the expressions of cytokine/chemokine receptors are
more stable in HaCaT than in NHKs. Cells were incubated with
cytokines/chemokines for 2 days, and AQP3 expression was
quantified by immunoblotting. We found that TARC (thymus
and activation-regulated chemokine)/CCL17, a Th2 chemotactic
chemokine, increased AQP3 expression (Figure 3a). TNF-a
significantly decreased AQP3 expression, which is consistent
with previous data in a human squamous cell carcinoma cell
line (DJM-1) (Horie et al., 2009). Figure 3b shows that CCL17
increased AQP3 expression in a dose-dependent manner.

CCL17 is produced by dendritic cells, T cells, and kera-
tinocytes (Reiss et al., 2001). It has been reported that
stimulation with IFN-g and TNF-a synergistically induced
CCL17 production in HaCaT cells (Vestergaard et al., 2000).
To elucidate the mechanism of CCL17-facilitated AQP3
upregulation, HaCaT keratinocytes were incubated with
TNF-a and INF-g, and assayed for CCL17 and AQP3 mRNA
expression. Figure 3c shows that addition of TNF-a/INF-g
increased intrinsic CCL17 in keratinocytes approximately
nine-fold, without effect on AQP3 expression. In contrast,
incubation with CCL17 increased AQP3 expression, whereas
intrinsic CCL17 expression was not altered. These results
suggest that exogenous CCL17 affects AQP3 expression.

We next studied whether exogenous CCL17 could affect
cell signaling, resulting in increased AQP3 expression. Cells
were treated with various cell signaling inhibitors following
incubation with CCL17 for 1 day, after which AQP3 mRNA
expression was assessed. Figure 3d shows that mitogen-
activated protein kinase and protein kinase C inhibitors
(U0126 and R03-2432) suppressed CCL17-facilitated AQP3
upregulation, suggesting the involvement of CCL17-depen-
dent mitogen-activated protein kinase and/or protein kinase C
cell signaling in increased AQP3 expression.

CCL17 enhances keratinocyte proliferation

We determined the effect of CCL17 on keratinocyte
proliferation. HaCaT keratinocytes were starved for 1 day,
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Figure 1. AQP3 expression in the epidermis of AD lesions and healthy subjects. (a) Skin specimens were immunostained with anti-AQP3. Left, healthy subject;

right, lesion from AD patients. Bar¼ 50 mm. (b) AQP3 mRNA expression in the epidermis from AD patients (lesion, n¼ 7; non-lesion, n¼ 4) and healthy subjects

(n¼6) by quantitative RT-PCR. Data are expressed as AQP3/GAPDH ratio (mean±SE). *Po0.01. AD, atopic dermatitis; AQP, aquaporin; GAPDH,

glyceraldehyde-3-phosphate dehydrogenase; RT-PCR, reverse transcription-PCR.
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and treated with CCL17 for 6 hours. AQP3 mRNA expression
was increased 2.6-fold in CCL17-treated cells (Figure 4a, left).
CCL17 also significantly increased the expressions of
proliferation markers, keratins 5 and 14, but not those of
differentiation markers, keratins 1 and 10 (Figure 4a, right).
To examine the effect of CCL17 on cell growth, cells were
treated with CCL17 for 2 days in the starved medium, after
which cell proliferation was induced by replacing the
medium with 0.1 or 2% fetal bovine serum. As shown in

Figure 4b, cell proliferation, assessed by BrdU incorporation,
was significantly increased in CCL17-treated cells as com-
pared with control cells. Finally, cell growth was assayed in
controls and AQP3 knockdown keratinocytes to determine
the involvement of AQP3 in CCL17-induced cell prolifera-
tion. Transfection of small-interfering RNA-AQP3 into HaCaT
cells consistently reduced AQP3 mRNA expression by B90%
(9.1±1.4% of controls). Figure 4c shows reduced CCL17-
induced cell proliferation in AQP3 knockdown keratinocytes.
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Figure 2. Effect of AQP3 upregulation in human keratinocytes. NHKs were transfected with empty vector (pCMV6-XL4) or plasmid expressing

human AQP3 (5–25 ng per 8�103 cells). (a) (Left) The relative mRNA expression of AQP3/GAPDH (SE, n¼ 4–5, *Po0.01). (Right) Immunoblot of cell

homogenates with anti-AQP3 (15 mg protein per lane, 100 ng per 2�105cells). (b) The relative mRNA expressions of keratins 5, 14, 1, and 10 in NHKs

transfected with empty vector (V) or AQP3 plasmid (A). Data are expressed as keratins/GAPDH ratio (mean±SE) (n¼ 3) *Po0.01. (c) Cell proliferation was

assessed by modified MTT assay (SE, n¼ 5, *Po0.01, 5 ng per 8� 103 cells). (d) Cellular glycerol content and (e) ATP content (SE, n¼ 5, *Po0.01, 5 ng per

8� 103 cells). AQP, aquaporin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NHK, normal human keratinocyte.
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Taken together, these findings suggest that exogenous CCL17
increases AQP3 expression and enhances keratinocyte
proliferation.

Reduced epidermal hyperplasia in AQP3-null mice in an AD
model

To investigate the requirement of AQP3 for the development
of AD, we applied an established murine model of AD in
wild-type (WT) and AQP3-null mice. Dermatitis was induced
by repeated epicutaneous application of ovalbumin (OVA) in
a patch to tape-stripped skin, as described previously (Spergel
et al., 1998).

Hematoxylin and eosin staining showed that the OVA-
treated epidermis in WT mice was thicker than that in AQP3-

null mice (Figure 5a, left), with the representative data
summarized in Figure 5a (right). Immunostaining showed
strong expression of the AQP3 protein on the plasma
membranes in the OVA-applied epidermis of WT mice
(Figure 5b). Immunoblot analysis confirmed that repeated
OVA sensitization significantly increased AQP3 expression
(Figure 5c), supporting the utility of the OVA-AD model in
investigating the role of AQP3 in AD pathogenesis. To
quantify keratinocyte proliferation, immunostaining with
anti-proliferating cell nuclear antigen (PCNA) was performed
(Supplementary Figure S1 online). Figure 5d shows that OVA
sensitization resulted in an B10-fold increase in PCNA-
positive cells in the WT epidermis, while the number of
PCNA-positive cells was much lower in the AQP3-null than
in the WT-OVA-treated epidermis. To determine epidermal
permeability, transepidermal water loss (TEWL) was mea-
sured on the OVA- and saline-treated skin. After five
treatments with OVA, TEWL was significantly elevated in
the WT-OVA treated skin compared with the control- and
saline-treated skin (Figure 5e).

Total IgE and OVA-specific IgE were significantly higher in
OVA sensitization than saline application in both WT and AQP3-
null mice, indicating that repeated OVA application induced
comparable allergic sensitization in WT and AQP3-null mice
(Supplementary Figure S2 online). These findings suggest that
AQP3 deficiency suppresses OVA-induced keratinocyte hyper-
proliferation, which may be responsible for epidermal hyperpla-
sia and barrier disruption during AD development.

AQP3 deficiency prevents hapten-induced AD development

To confirm the involvement of AQP3 expression in epidermal
hyperplasia and barrier disruption during AD development,
we investigated a different, hapten-induced mouse model of
AD (Man et al., 2008). WT and AQP3-null mice were
challenged 10 times with an application of oxazolone (Ox)
after 1 week of sensitization. Figure 6a shows that Ox-treated
WT mice developed mild erythema and a rough-textured
skin surface, whereas there were only minor changes in
AQP3-null mice, suggesting that WT mice are more
susceptible to atopic disorders than AQP3-null mice. TEWL
values were much greater in Ox-applied WT than in the
AQP3-null skin, indicating that AQP3 deficiency prevented
the barrier disruption induced by Ox applications (Figure 6b).
Hematoxylin and eosin staining showed that AQP3 defi-
ciency sustained hapten-induced epidermal hyperplasia
compared with the WT epidermis (Figure 6c). Immunostain-
ing with AQP3 showed strong expression in the thickened
epidermis of Ox-treated WT mice (Figure 6d). Immuno-
blotting verified an B10-fold increase in AQP3 expression in
the WT AD epidermis (Figure 6e). CCL17 was comparably
elevated in Ox-applied WT and the AQP3-null epidermis as
assessed by ELISA assay (Figure 6f). Figure 6g showed that
total IgE was significantly elevated in both WT and AQP3-
null mice, indicating that allergic sensitization occurred in
both WT and AQP3-null mice. These data from the Ox model
are in agreement with those from the OVA-AD model: AQP3
expression is required for epidermal hyperplasia, which might
contribute to barrier disruption during AD development.
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DISCUSSION
We found that AQP3 upregulation enhanced keratinocyte
proliferation, which may be responsible for epidermal
hyperplasia found in a number of skin disorders. We
previously suggested the involvement of AQP3 in keratino-
cyte proliferation, in view of the observation that AQP3
deficiency impaired keratinocyte proliferation and reduced
cellular glycerol and ATP content (Hara-Chikuma and Verk-
man, 2008c). We proposed that AQP3-mediated glycerol
transport is an important determinant of keratinocyte
proliferation, in which glycerol works as a key regulator of
cellular ATP energy. In this study, we showed that increased
AQP3 expression by plasmid-DNA transfection or the AQP3
inducer CCL17 enhanced keratinocyte proliferation with
increased proliferation markers, and increased cellular
glycerol and ATP content. Although further studies are
required to elucidate the exact mechanisms by which
AQP3 expression increases cell proliferation, AQP3 upregu-
lation might be one of the determinants of keratinocyte
hyperproliferation in several skin diseases, such as AD.

In this study, we showed in two different murine models
that AQP3-null mice exhibit defective epidermal hyperplasia
with suppressed barrier disruption during AD development.
Repeated application of OVA or Ox induced AD-like skin
lesions with irregularly acanthotic epidermis, high TEWL, and
increased AQP3 expression in WT mice. These data provide

evidence for the involvement of AQP3 in excessive kerati-
nocyte proliferation and disturbed barrier function during the
development of AD. Enhanced keratinocyte proliferation
might induce disturbed differentiation and barrier function, as
there is no sufficient time for normal differentiation or
development of a functional epidermal barrier during
accelerated cell renewal. AD is a common chronic inflam-
matory skin disease, which is classified into extrinsic and
intrinsic types according to the presence or absence of
sensitization toward environmental allergens (Tokura, 2010).
The extrinsic and allergic AD lesions display impaired
epidermal barrier function by inherited and acquired factors,
which not only enhances allergen sensitization but also leads
to systemic allergic responses (Spergel et al., 1998; Novak
et al., 2003; Elias and Steinhoff, 2008; O’Regan et al., 2008).
Recent human genetic studies have shown that loss-of-
function mutation in filaggrin was associated with impaired
skin barrier function in AD patients (Palmer et al., 2006;
Morar et al., 2007). Coincidentally, the flaky-tail mouse,
which exhibited low filaggrin gene expression, showed
barrier abnormality with epidermal hyperplasia like a severe
AD (Scharschmidt et al., 2009; Moniaga et al., 2010).
Although further studies are necessary, it is expected that
AQP3 expression might be increased in the other murine AD
model, including filaggrin deficiency. The application of the
AQP3 inhibitor will provide a, to our knowledge, previously
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expressed as mean±SE (n¼ 4, *Po0.05). (f) CCL17 protein levels in control and Ox-treated mice. (n¼ 4, SE, *Po0.05). (g) Total serum IgE levels were

measured in control and Ox-treated mice (n¼5, SE, **Po0.01). AD, atopic dermatitis; AQP, aquaporin; H&E, hematoxylin and eosin; Ox, oxazolone; TEWL,
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Figure 5. Suppressed epidermal hyperplasia in AQP3-null OVA-AD mice. (a) (Left) H&E staining of WT (þ /þ ) and AQP3-null mice (�/�). Bar¼ 100mm

(�100) and bar¼ 50mm (� 400). (Right) Epidermal thickness in control and OVA-treated mice (n¼ 3, three locations per mouse, *Po0.05). (b) Immunostaining

of AQP3 in the epidermis of control and OVA-treated WT (þ /þ ) mice. �/�, AQP3-null control mice. Bar¼ 50 mm. (c) (Left) Immunoblot analysis of epidermal

homogenate with anti-AQP3 and b-actin. (Right) The evaluation of AQP3 protein levels in control and OVA-treated WT (þ /þ ) mice (n¼4, SE, *Po0.05).

(d) PCNA staining was performed in control and OVA-treated mice. The number of PCNA-positive cells in the epidermal basal layer was counted

(n¼3, three locations per mouse, SE, *Po0.05). (e) TEWL on the dorsal skin was measured at the end of the fifth cycle of treatment (n¼5–8, SE, *Po0.05).

AD, atopic dermatitis; AQP, aquaporin; H&E, hematoxylin and eosin; OVA, ovalbumin; PCNA, proliferating cell nuclear antigen; TEWL, transepidermal

water loss; WT, wild type.
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unreported therapeutic strategy for controlling unwanted
increased keratinocyte proliferation in the AD epidermis.

The acute-phase AD skin displayed an allergen-derived
Th2 cell-dominant infiltrate of T lymphocytes and increased
Th2-type cytokine secretion, which induced an elevation in
serum IgE and inflammation. In the chronic phase, AD lesions
displayed infiltration with both Th1 and Th2 cells. The
screening assay was performed based on the hypothesis that
some Th1 and/or Th2 cell-derived chemokines/cytokines
might increase AQP3 expression, which enhances keratino-
cyte proliferation during AD development. We found that the
CCL17 Th2 chemotactic chemokine increased AQP3 expres-
sion in keratinocytes through mitogen-activated protein
kinase and/or protein kinase C cell signaling. Indeed, we
verified that CCL17 activated extracellular signal-regulated
kinase of mitogen-activated protein kinase (not shown). It has
been reported that CCL17 is produced by dendritic cells,
T cells, and keratinocytes, and induces Th2-type T-cell
migration (Reiss et al., 2001). CCL17 was found to be
increased to a greater extent in the AD serum and epidermis
than in healthy controls (Kakinuma et al., 2001; Saeki and
Tamaki, 2006). Consistent with previous observations, we
found significant elevation of CCL17 in both the WT and the
AQP3-null AD epidermis as assessed by ELISA assay. Our
findings implicate the involvement of CCL17 in the increased
AQP3 expression in the AD epidermis, although further studies
are required to establish the mechanisms of AQP3 upregula-
tion by CCL17. CCL17-induced AQP3 upregulation might
accelerate keratinocyte proliferation during AD development.

In conclusion, our data provide several lines of evidence
that AQP3 is involved in keratinocyte proliferation and
epidermal hyperplasia. We propose that upregulated AQP3
expression enhances keratinocyte proliferation, which is
involved in hyperplasia and barrier disruption in AD. Our
findings suggest that AQP3 suppression by topical drugs may
be useful for treatment of skin diseases associated with
excessive epidermal proliferation.

MATERIALS AND METHODS
Human subjects

A total of 7 patients with AD (lesion, n¼ 7; non-lesion, n¼ 4) and 6

healthy non-AD volunteers were enrolled in this study. AD was

diagnosed according to the consensus criteria as described

previously (Williams et al., 1994). Informed consent was obtained

from all subjects involved in this study. The study was approved by

the Ethics Committee of the Kyoto University and was conducted

according to the Declaration of Helsinki Principles. None of the

patients had received local or systemic treatment with glucocorti-

coids or immunosuppressants within 1 week before the study. Skin

biopsies were analyzed with real-time PCR and immunohistochem-

istry. For real-time PCR, the skin was first separated into the

epidermis and the dermis by incubation in 0.25% trypsin-EDTA

(Invitrogen, Carlsbad, CA) at 37 1C for 1 hour, and total RNA was

extracted from the epidermis as described below.

Murine AD model

The AQP3-null mice (hairless genetic background) were generated

by targeted gene disruption as described previously (Ma et al., 2002).

All animal experiments were approved by the Committee on Animal

Research of the Kyoto University. Mice aged 6–8 weeks were treated

with OVA (Sigma-Aldrich, St Louis, MO) or Ox (Sigma-Aldrich), as

described previously (Spergel et al., 1998; Man et al., 2008). In brief, for

the OVA model, the dorsal skin was tape stripped six times, and OVA

(100mg in 100ml saline) or saline alone (100ml) was placed on a round

patch (16 mm in diameter) (Torii Pharmaceutical, Tokyo, Japan), which

was secured to the skin with an elastic tape (Alcare, Tokyo, Japan). Each

mouse was treated with five 4-day periods of epicutaneous application

of OVA or saline under occlusion at 3-day intervals. For the Ox model,

each mouse was sensitized by one topical treatment on the dorsal skin

with 60ml of 2.5% Ox (in ethanol). One week later, the mouse was

treated topically with 120ml of 0.1% Ox on the dorsal area once every

other day for an additional 3 weeks. TEWL was measured with a

Tewameter Vapo Scan (Asahi Biomed, Tokyo, Japan). CCL17 level was

assayed in the epidermal homogenate by ELISA (R&D Systems,

Minneapolis, MN).

Human keratinocyte cell cultures

Normal human epidermal keratinocytes (Kurabo, Osaka, Japan)

were grown in Humedia-KG2 medium (Kurabo). HaCaT cells (a kind

gift of Dr Fusenig, German Cancer Research Center, Heidelberg,

Germany) were cultured in low-glucose DMEM (Invitrogen)

with 10% fetal bovine serum (Funakoshi, Tokyo, Japan). After the

cells grew to 80–90% confluence, they were treated with 10 ng ml�1

IFN-g (R&D Systems), 10 ng ml�1 TNF-a (Miltenyi Biotec, Bergisch

Gladbach, Germany), 1 ng ml�1 transforming growth factor-b1

(PeproTeck, Rocky Hill, NJ), 50 ng ml�1 IL-4 (PeproTeck),

50 ng ml�1 IL-13 (PeproTeck), 20 ng ml�1 CCL27 (PeproTeck), and

20–200 ng ml�1 CCL17 (Miltenyi Biotec), respectively. For treatment

with cell signaling inhibitors, cells were incubated for 1 hour

with 10 mM U73122 (Cayman Chemical, Ann Arbor, MI), 50 mM

LY294002 (Jena Bioscience, Jena, Germany), 10 mM U0126

(Cell Signaling Technology, Danvers, MA), or 10 mM R03-2432

(Enzo Life Sciences, Plymouth Meeting, PA), followed by treatment

with CCL17 (20 ng ml�1). Experiments were performed 6–48 hours

after incubation for quantitative reverse transcription-PCR, immuno-

blot analysis, and cell growth assay.

The constructs yielding human AQP3 (NM_004925) and con-

trol vector pCMV6-XL4 were obtained from Origene TrueClone

(Rockville, MD). NHKs were transfected with purified plasmid DNA

using Lipofectamine 2000 (5–25 ng per 8� 103 cells; Invitrogen).

HaCaT cells were transfected with AQP3 small-interfering RNA

or non-targeting small-interfering RNAs (Dharmacon, Lafayette, CO)

at 40–50% confluence using Lipofectamine 2000. Cell proliferation

was analyzed using Cell Count Reagent SF (Nacalai Tesque,

Kyoto, Japan) or the BrdU Cell Proliferation Assay kit (Calbiochem,

San Diego, CA). Cell homogenates (3,500 g, 10 minutes, 4 1C) were

assayed for glycerol and ATP using commercial kits (glycerol, Sigma-

Aldrich; ATP, Roche, Basel, Switzerland).

Histology

Paraffin-embedded sections were stained with hematoxylin and eosin

or immunostained with anti-AQP3 (Millipore, Billerica, MA) or

anti-PCNA (Dako, Glostrup, Denmark) with biotinylated IgG and

horseradish peroxidase-conjugated ABC reagent (Vector Laboratories,

Burlingame, CA). Epidermal thickness and PCNA-positive cells per

100mm were measured at three locations per mouse.
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Immunoblot analysis
The epidermis of each mouse was separated from the dermis by

incubation in phosphate-buffered saline solution at 60 1C for

20 seconds. The epidermis and cultured HaCaT cells were lysed

with extraction buffer containing 250 mM sucrose, 1 mM EDTA, and

1% protein inhibitor cocktail (Sigma-Aldrich). For immunoblot

analysis, polyclonal AQP3 antibody (Millipore) and horse-

radish peroxidase-conjugated secondary anti-rabbit IgG antibody

(Cell Signaling Technology) were used for detection by ECL

(GE Healthcare, Piscataway, NJ).

Quantitative reverse transcription-PCR
Total RNA was isolated using RNeasy kits and digested with DNase I

(Qiagen, Hilden, Germany). The cDNA was reverse transcribed from

total RNA samples using the Prime Script RT reagent kit (Takara Bio,

Otsu, Japan). Quantitative reverse transcription-PCR was performed

using SYBR Green I (Takara Bio) and primers listed in Supplementary

Table S1 online using the Light Cycler real-time PCR apparatus (Roche).

Statistical analysis

Statistical analysis was performed using the two-tailed Student’s

t-test or analysis of variance.
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