64 research outputs found

    Spatial variability of nitrogen dioxide and formaldehyde and residential exposure of children in the industrial area of Viadana, Northern Italy

    Get PDF
    Chipboard production is a source of ambient air pollution. We assessed the spatial variability of outdoor pollutants and residential exposure of children living in proximity to the largest chipboard industry in Italy, and evaluated the reliability of exposure estimates obtained from a number of available models. We obtained passive sampling data on NO2 and formaldehyde collected by the environmental protection agency of Lombardia region at 25 sites in the municipality of Viadana during 10 weeks (2017-18), and compared NO2 measurements with average weekly concentrations from continuous monitors. We compared interpolated NO2 and formaldehyde surfaces with previous maps for 2010. We assessed the relationship between residential proximity to the industry and pollutant exposures assigned using these maps, as well as other available countrywide/continental models based on routine data on NO2, PM10, and PM2.5. The correlation between NO2 concentrations from continuous and passive sampling was high (Pearson\u2019s r=0.89), although passive sampling underestimated NO2 especially during winter. For both 2010 and 2017-18, we observed higher NO2 and formaldehyde concentrations in the south of Viadana, with hot-spots in proximity to the industry. PM10 and PM2.5 exposures were higher for children at <1km compared to the children living at >3.5 km to the industry, whereas NO2 exposure was higher at 1-1.7 km to the industry. Road and population densities were also higher close to the industry. Findings from a variety of exposure models suggest that children living in proximity to the chipboard industry in Viadana are more exposed to air pollution, and that exposure gradients are relatively stable over time

    Road traffic pollution and childhood leukemia: a nationwide case-control study in Italy

    Get PDF
    Background The association of childhood leukemia with traffic pollution was considered in a number of studies from 1989 onwards, with results not entirely consistent and little information regarding subtypes. Aim of the study We used the data of the Italian SETIL case-control on childhood leukemia to explore the risk by leukemia subtypes associated to exposure to vehicular traffic. Methods We included in the analyses 648 cases of childhood leukemia (565 Acute lymphoblastic–ALL and 80 Acute non lymphoblastic-AnLL) and 980 controls. Information on traffic exposure was collected from questionnaire interviews and from the geocoding of house addresses, for all periods of life of the children. Results We observed an increase in risk for AnLL, and at a lower extent for ALL, with indicators of exposure to traffic pollutants. In particular, the risk was associated to the report of closeness of the house to traffic lights and to the passage of trucks (OR: 1.76; 95% CI 1.03–3.01 for ALL and 6.35; 95% CI 2.59–15.6 for AnLL). The association was shown also in the analyses limited to AML and in the stratified analyses and in respect to the house in different period of life. Conclusions Results from the SETIL study provide some support to the association of traffic related exposure and risk for AnLL, but at a lesser extent for ALL. Our conclusion highlights the need for leukemia type specific analyses in future studies. Results support the need of controlling exposure from traffic pollution, even if knowledge is not complete

    Air Pollution Exposure during Pregnancy and Childhood Autistic Traits in Four European Population-Based Cohort Studies: The ESCAPE Project

    Get PDF
    Background: Prenatal exposure to air pollutants has been suggested as a possible etiologic factor for the occurrence of autism spectrum disorder. Objectives: We aimed to assess whether prenatal air pollution exposure is associated with childhood autistic traits in the general population. Methods: Ours was a collaborative study of four European population-based birth/child cohorts—CATSS (Sweden), Generation R (the Netherlands), GASPII (Italy), and INMA (Spain). Nitrogen oxides (NO2, NOx) and particulate matter (PM) with diameters of ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and between 2.5 and 10 μm (PMcoarse), and PM2.5 absorbance were estimated for birth addresses by land-use regression models based on monitoring campaigns performed between 2008 and 2011. Levels were extrapolated back in time to exact pregnancy periods. We quantitatively assessed autistic traits when the child was between 4 and 10 years of age. Children were classified with autistic traits within the borderline/clinical range and within the clinical range using validated cut-offs. Adjusted cohort-specific effect estimates were combined using random-effects meta-analysis. Results: A total of 8,079 children were included. Prenatal air pollution exposure was not associated with autistic traits within the borderline/clinical range (odds ratio = 0.94; 95% CI: 0.81, 1.10 per each 10-μg/m3 increase in NO2 pregnancy levels). Similar results were observed in the different cohorts, for the other pollutants, and in assessments of children with autistic traits within the clinical range or children with autistic traits as a quantitative score. Conclusions: Prenatal exposure to NO2 and PM was not associated with autistic traits in children from 4 to 10 years of age in four European population-based birth/child cohort studies.Funding was provided as follows: ESCAPE Project— European Community’s Seventh Framework Program (FP7/2007-2011-GA#211250). CATSS, Sweden— Swedish Research Council for Health, Working Life and Welfare (FORTE), Swedish Research Council (VR) Formas, in partner hip with FORTE and VINNOVA (cross-disciplinary research program concerning children’s and young people’s mental health); VR through the Swedish Initiative for Research on Microdata in the Social And Medical Sciences (SIMSAM) framework grant 340-2013-5867; HKH Kronprinsessan Lovisas förening för barnasjukvård; and the Strategic Research Program in Epidemiology at Karolinska Institutet. Generation R, the Netherlands—The Generation R Study is conducted by the Erasmus University Medical Center in close collaboration with the School of Law and Faculty of Social Sciences of the Erasmus University Rotterdam; the Municipal Health Service Rotterdam area, Rotterdam; the Rotterdam Homecare foundation, Rotterdam; and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond (STAR-MDC), Rotterdam. The general design of the Generation R Study is made possible by financial support from the Erasmus University Medical Center, Rotterdam; the Erasmus University Rotterdam; the Netherlands Organization for Health Research and Development (ZonMw); the Netherlands Organization for Scientific Research (NWO); and the Ministry of Health, Welfare and Sport. The Netherlands Organisation for Applied Scientific Research (TNO) received funding from the Netherlands Ministry of Infrastructure and the Environment to support exposure assessment. GASPII, Italy—grant from the Italian Ministry of Health (ex art.12, 2001). INMA, Spain— grants from Instituto de Salud Carlos III (Red INMA G03/176 and CB06/02/0041 FIS-FEDER 03/1615, 04/1509, 04/1112, 04/1931, 05/1079, 05/1052, 06/1213, 07/0314, 09/02647, 11/01007, 11/02591, CP11/00178, FIS-PI041436, FIS-PI081151, FIS-PI06/0867, FIS-PS09/00090), PI13/1944, PI13_02032, PI14/0891, PI14/1687, MS13/00054, UE (FP7-ENV-2011 cod 282957, and HEALTH.2010.2.4.5-1); Generalitat de Catalunya-CIRIT 1999SGR 00241; La Fundació La Marató de TV3 (090430); Conselleria de Sanitat Generalitat Valenciana; Department of Health of the Basque Government (2005111093 and 2009111069); and Provincial Government of Gipuzkoa (DFG06/004 and DFG08/001). V.W.V.J. received an additional grant from the Netherlands Organization for Health Research and Development (ZonMw 90700303, 916.10159). A.G.’s work was supported by a research grant from the European Community’s 7th Framework Programme (FP7/2008–2013-GA#212652). A full roster of the INMA project investigators can be found online (http://www. proyectoinma.org/presentacion-inma/listado-investigadores/ en_listado-investigadores.html)

    Health impact assessment of waste management facilities in three European countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Policies on waste disposal in Europe are heterogeneous and rapidly changing, with potential health implications that are largely unknown. We conducted a health impact assessment of landfilling and incineration in three European countries: Italy, Slovakia and England.</p> <p>Methods</p> <p>A total of 49 (Italy), 2 (Slovakia), and 11 (England) incinerators were operating in 2001 while for landfills the figures were 619, 121 and 232, respectively. The study population consisted of residents living within 3 km of an incinerator and 2 km of a landfill. Excess risk estimates from epidemiological studies were used, combined with air pollution dispersion modelling for particulate matter (PM<sub>10</sub>) and nitrogen dioxide (NO<sub>2</sub>). For incinerators, we estimated attributable cancer incidence and years of life lost (YoLL), while for landfills we estimated attributable cases of congenital anomalies and low birth weight infants.</p> <p>Results</p> <p>About 1,000,000, 16,000, and 1,200,000 subjects lived close to incinerators in Italy, Slovakia and England, respectively. The additional contribution to NO<sub>2 </sub>levels within a 3 km radius was 0.23, 0.15, and 0.14 ÎĽg/m<sup>3</sup>, respectively. Lower values were found for PM<sub>10</sub>. Assuming that the incinerators continue to operate until 2020, we are moderately confident that the annual number of cancer cases due to exposure in 2001-2020 will reach 11, 0, and 7 in 2020 and then decline to 0 in the three countries in 2050. We are moderately confident that by 2050, the attributable impact on the 2001 cohort of residents will be 3,621 (Italy), 37 (Slovakia) and 3,966 (England) YoLL. The total exposed population to landfills was 1,350,000, 329,000, and 1,425,000 subjects, respectively. We are moderately confident that the annual additional cases of congenital anomalies up to 2030 will be approximately 2, 2, and 3 whereas there will be 42, 13, and 59 additional low-birth weight newborns, respectively.</p> <p>Conclusions</p> <p>The current health impacts of landfilling and incineration can be characterized as moderate when compared to other sources of environmental pollution, e.g. traffic or industrial emissions, that have an impact on public health. There are several uncertainties and critical assumptions in the assessment model, but it provides insight into the relative health impact attributable to waste management.</p

    Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: Results from the ESCAPE and TRANSPHORM projects

    Get PDF
    n/

    "Le donne, le ragazze e il mondo che viene"

    No full text
    Per \uabAgenda 2030 a scuola\ubb sono stati selezionati \uab12 obiettivi che consentissero di affrontare tematiche con una agevole spendibilit\ue0 didattica. Su queste tematiche, si sviluppano le monografie raccolte in questo volume, scritte da docenti universitari, ricercatori e ricercatrici o esperti nel proprio settore. Ogni monografia analizza aspetti, problematiche e possibili soluzioni di un obiettivo principale esplicitando allo stesso tempo i collegamenti con gli altri obiettivi dell\u2019Agenda 2030, per fornire una visione il pi\uf9 possibile trasversale e integrata.\ubb Ecco l\u2019elenco delle monografie e dei relativi autori: Obiettivo 2. Porre fine alla fame, raggiungere la sicurezza alimentare, migliorare la nutrizione e promuovere un\u2019agricoltura sostenibile (Mauro Mandrioli) Obiettivo 3. Assicurare la salute e il benessere per tutti e per tutte le et\ue0 (Giovanni Maga) Obiettivo 4. Fornire un\u2019educazione di qualit\ue0, equa e inclusiva, e opportunit\ue0 di apprendimento per tutti (Antonella Bachiorri) Obiettivo 5. Raggiungere l\u2019uguaglianza di genere ed emancipare tutte le donne e le ragazze (Chiara Xausa, Silvana Badaloni, Annalisa Oboe, Claudia Padovani, Lorenza Perini) Obiettivo 6. Garantire a tutti la disponibilit\ue0 e la gestione sostenibile dell\u2019acqua e delle strutture igienico-sanitarie (Michele Chieco e Anna Barra Caracciolo) Obiettivo 7. Assicurare a tutti l\u2019accesso a sistemi di energia economici, affidabili, sostenibili e moderni (Nicola Armaroli, Vincenzo Balzani) Obiettivo 9. Costruire un\u2019infrastruttura resiliente e promuovere l\u2019innovazione una industrializzazione equa, responsabile e sostenibile (Nicola Nosengo) Obiettivo 11. Rendere le citt\ue0 e gli insediamenti umani inclusivi, sicuri, duraturi e sostenibili (Mario Grosso) Obiettivo 12. Garantire modelli sostenibili di produzione e di consumo (Silvia Serranti) Obiettivo 13. Promuovere azioni, a tutti i livelli, per combattere il cambiamento climatico (Selvaggia Santin) Obiettivo 14. Conservare e utilizzare in modo durevole gli oceani, i mari e le risorse marine per uno sviluppo sostenibile; Obiettivo 15. Proteggere, ripristinare e favorire un uso sostenibile dell\u2019ecosistema terrestre (Nicholas Barbieri

    Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study

    No full text
    BACKGROUND: The effect of long-term exposure to metal components in particulate matter on mortality are still controversial. OBJECTIVES: To study the association between long-term exposure to PM10, PM2.5, PM2.5 absorbance, particulate matter components (copper, iron, zinc, sulfur, silicon, potassium, nickel, and vanadium) and non-accidental, cardiovascular (CVD), and ischemic heart disease (IHD) mortality. METHODS: All 30+ year olds from the Rome Longitudinal Study were followed for vital status from October 2001 until December 2010. We used land use regression models to estimate annual average concentrations at residences and Cox models to estimate the associations between pollutants and cause-specific mortality, adjusting for individual and contextual characteristics. Hazard ratios (HRs) were expressed per increments equal to the 5(th)-95(th) percentile range of each pollutant distribution. RESULTS: We analyzed 1,249,108 residents and found strong associations between all exposure indicators and mortality. We observed higher mortality risk with increasing exposure to PM2.5 absorbance (HR=1.05; 95% CI: 1.03-1.06) and to tracers of non-tailpipe traffic emissions such as tire and brake wear (Cu, Fe, and Zn); for PM2.5Zn, we found HR=1.06 (95% CI: 1.04-1.08) for non-accidental mortality, HR=1.07 (95% CI: 1.04-1.10) for CVD, and HR=1.11 (95% CI: 1.06-1.16) for IHD mortality. With increasing levels of nickel in PM10, we found HR=1.07 (95% CI: 1.05-1.09) for non-accidental mortality, HR=1.08 (95% CI: 1.05-1.11) for CVD, and HR=1.13 (95% CI: 1.08-1.18) for IHD mortality. Results were robust when we adjusted for PM mass and for cardiovascular mortality when we adjusted for NO2. CONCLUSIONS: In addition to vehicular exhaust pollutants, PM related to non-tailpipe emissions and mixed oil burning/industry plays an important role in mortality

    Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study

    No full text
    BACKGROUND: The effect of long-term exposure to metal components in particulate matter on mortality are still controversial. OBJECTIVES: To study the association between long-term exposure to PM10, PM2.5, PM2.5 absorbance, particulate matter components (copper, iron, zinc, sulfur, silicon, potassium, nickel, and vanadium) and non-accidental, cardiovascular (CVD), and ischemic heart disease (IHD) mortality. METHODS: All 30+ year olds from the Rome Longitudinal Study were followed for vital status from October 2001 until December 2010. We used land use regression models to estimate annual average concentrations at residences and Cox models to estimate the associations between pollutants and cause-specific mortality, adjusting for individual and contextual characteristics. Hazard ratios (HRs) were expressed per increments equal to the 5(th)-95(th) percentile range of each pollutant distribution. RESULTS: We analyzed 1,249,108 residents and found strong associations between all exposure indicators and mortality. We observed higher mortality risk with increasing exposure to PM2.5 absorbance (HR=1.05; 95% CI: 1.03-1.06) and to tracers of non-tailpipe traffic emissions such as tire and brake wear (Cu, Fe, and Zn); for PM2.5Zn, we found HR=1.06 (95% CI: 1.04-1.08) for non-accidental mortality, HR=1.07 (95% CI: 1.04-1.10) for CVD, and HR=1.11 (95% CI: 1.06-1.16) for IHD mortality. With increasing levels of nickel in PM10, we found HR=1.07 (95% CI: 1.05-1.09) for non-accidental mortality, HR=1.08 (95% CI: 1.05-1.11) for CVD, and HR=1.13 (95% CI: 1.08-1.18) for IHD mortality. Results were robust when we adjusted for PM mass and for cardiovascular mortality when we adjusted for NO2. CONCLUSIONS: In addition to vehicular exhaust pollutants, PM related to non-tailpipe emissions and mixed oil burning/industry plays an important role in mortality

    Socioeconomic position and health status of people who live near busy roads: the Rome Longitudinal Study (RoLS)

    No full text
    Abstract Background Subjects living close to high traffic roads (HTR) are more likely to suffer from air-pollution related morbidity and mortality. The issue has large public health consequences but few studies have described the main socio-demographic characteristics of people exposed to traffic. Objectives To characterise a large cohort of residents in Rome according to different measures of traffic exposure, socioeconomic position (SEP), and baseline health status. Methods Residents of Rome in October 2001 were selected. Individual and area-based SEP indices were available. GIS was used to obtain traffic indicators at residential addresses: distance from HTR (> = 10,000 vehicles/day), length of HTR, average daily traffic count, and traffic density within 150 meters of home. Hospitalisations in the 5-year period before enrolment were used to characterise health status. Logistic and linear regression analyses estimated the association between traffic exposure and socio-demographic characteristics. Results We selected 1,898,898 subjects with complete SEP information and GIS traffic indicators. A total of 320,913 individuals (17%) lived within 50 meters of an HTR, and 14% lived between 50 and 100 meters. These proportions were higher among 75+ year-old subjects. Overall, all traffic indicators were directly associated with SEP, with people living in high or medium SEP areas or with a university degree more likely to be exposed to traffic than people living in low SEP areas or with a low level of education. However, an effect modification by area of residence within the city was seen and the association between traffic and SEP was reversed in the city centre. Conclusions A large section of the population is exposed to traffic in Rome. Elderly people and those living in areas of high and medium SEP tend to be more exposed. These findings are related to the historical stratification of the population within the city according to age and socioeconomic status.</p
    • …
    corecore