345 research outputs found
Segregated tunneling-percolation model for transport nonuniversality
We propose a theory of the origin of transport nonuniversality in disordered
insulating-conducting compounds based on the interplay between microstructure
and tunneling processes between metallic grains dispersed in the insulating
host. We show that if the metallic phase is arranged in quasi-one dimensional
chains of conducting grains, then the distribution function of the chain
conductivities g has a power-law divergence for g -> 0 leading to nonuniversal
values of the transport critical exponent t. We evaluate the critical exponent
t by Monte Carlo calculations on a cubic lattice and show that our model can
describe universal as well nonuniversal behavior of transport depending on the
value of few microstructural parameters. Such segregated tunneling-percolation
model can describe the microstructure of a quite vast class of materials known
as thick-film resistors which display universal or nonuniversal values of t
depending on the composition.Comment: 8 pages, 5 figures (Phys. Rev. B - 1 August 2003)(fig1 replaced
eta-Nucleus interactions and in-medium properties of N*(1535) in chiral models
The properties of eta-nucleus interaction and their experimental consequences
are investigated with eta-nucleus optical potentials obtained by postulating
the N*(1535) dominance for eta-N system. The N*(1535) properties in nuclear
medium are evaluated by two kinds of chiral effective models based on distinct
pictures of N*(1535). We find that these two models provide qualitatively
different optical potentials of the eta meson, reflecting the in-medium
properties of N*(1535) in these models. In order to compare these models in
physical observables, we calculate spectra of (d,3He) reactions for the eta
mesic nucleus formation with various kinds of target nuclei. We show that the
(d,3He) spectra obtained in these models are significantly different and are
expected to be distinguishable in experiments.Comment: 24 pages, 8 figure
SPIDER: Probing the Early Universe with a Suborbital Polarimeter
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a
divergence-free polarization pattern ("B-modes") in the Cosmic Microwave
Background (CMB). In the inflationary scenario, the amplitude of this signal is
proportional to that of the primordial scalar perturbations through the
tensor-to-scalar ratio r. We show that the expected level of systematic error
in the SPIDER instrument is significantly below the amplitude of an interesting
cosmological signal with r=0.03. We present a scanning strategy that enables us
to minimize uncertainty in the reconstruction of the Stokes parameters used to
characterize the CMB, while accessing a relatively wide range of angular
scales. Evaluating the amplitude of the polarized Galactic emission in the
SPIDER field, we conclude that the polarized emission from interstellar dust is
as bright or brighter than the cosmological signal at all SPIDER frequencies
(90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the
"Southern Hole." We show that two ~20-day flights of the SPIDER instrument can
constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when
foreground contamination is taken into account. In the absence of foregrounds,
the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight
schedule updated, two typos fixed in Table 2, references and minor
clarifications added, results unchange
Genetic clustering on the hippocampal surface for genome-wide association studies
Imaging genetics aims to discover how variants in the human genome influence brain measures derived from images. Genome-wide association scans (GWAS) can screen the genome for common differences in our DNA that relate to brain measures. In small samples, GWAS has low power as individual gene effects are weak and one must also correct for multiple comparisons across the genome and the image. Here we extend recent work on genetic clustering of images, to analyze surface-based models of anatomy using GWAS. We performed spherical harmonic analysis of hippocampal surfaces, automatically extracted from brain MRI scans of 1254 subjects. We clustered hippocampal surface regions with common genetic influences by examining genetic correlations (rg) between the normalized deformation values at all pairs of surface points. Using genetic correlations to cluster surface measures, we were able to boost effect sizes for genetic associations, compared to clustering with traditional phenotypic correlations using Pearson's r
An overview of the current status of CMB observations
In this paper we briefly review the current status of the Cosmic Microwave
Background (CMB) observations, summarising the latest results obtained from CMB
experiments, both in intensity and polarization, and the constraints imposed on
the cosmological parameters. We also present a summary of current and future
CMB experiments, with a special focus on the quest for the CMB B-mode
polarization.Comment: Latest CMB results have been included. References added. To appear in
"Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific
Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11
July, 200
Assessment of hypermucoviscosity as a virulence factor for experimental Klebsiella pneumoniae infections: comparative virulence analysis with hypermucoviscosity-negative strain
Background: Klebsiella pneumoniae displaying the hypermucoviscosity (HV) phenotype are considered more virulent than HV-negative strains. Nevertheless, the emergence of tissue-abscesses-associated HV-negative isolates motivated us to re-evaluate the role of HV-phenotype. Results: Instead of genetically manipulating the HV-phenotype of K. pneumoniae, we selected two clinically isolated K1 strains, 1112 (HV-positive) and 1084 (HV-negative), to avoid possible interference from defects in the capsule. These well-encapsulated strains with similar genetic backgrounds were used for comparative analysis of bacterial virulence in a pneumoniae or a liver abscess model generated in either naive or diabetic mice. In the pneumonia model, the HV-positive strain 1112 proliferated to higher loads in the lungs and blood of naive mice, but was less prone to disseminate into the blood of diabetic mice compared to the HV-negative strain 1084. In the liver abscess model, 1084 was as potent as 1112 in inducing liver abscesses in both the naive and diabetic mice. The 1084-infected diabetic mice were more inclined to develop bacteremia and had a higher mortality rate than those infected by 1112. A mini-Tn5 mutant of 1112, isolated due to its loss of HV-phenotype, was avirulent to mice. Conclusion: These results indicate that the HV-phenotype is required for the virulence of the clinically isolated HV-positive strain 1112. The superior ability of the HV-negative stain 1084 over 1112 to cause bacteremia in diabetic mice suggests that factors other than the HV phenotype were required for the systemic dissemination of K. pneumoniae in an immunocompromised setting
Observational diagnostics of gas in protoplanetary disks
Protoplanetary disks are composed primarily of gas (99% of the mass).
Nevertheless, relatively few observational constraints exist for the gas in
disks. In this review, I discuss several observational diagnostics in the UV,
optical, near-IR, mid-IR, and (sub)-mm wavelengths that have been employed to
study the gas in the disks of young stellar objects. I concentrate in
diagnostics that probe the inner 20 AU of the disk, the region where planets
are expected to form. I discuss the potential and limitations of each gas
tracer and present prospects for future research.Comment: Review written for the proceedings of the conference "Origin and
Evolution of Planets 2008", Ascona, Switzerland, June 29 - July 4, 2008. Date
manuscript: October 2008. 17 Pages, 6 graphics, 134 reference
Measuring our Peculiar Velocity by "Pre-deboosting" the CMB
It was recently shown that our peculiar velocity \beta with respect to the
CMB induces mixing among multipoles and off-diagonal correlations at all scales
which can be used as a measurement of \beta, which is independent of the
standard measurement using the CMB temperature dipole. The proposed techniques
rely however on a perturbative expansion which breaks down for \ell \gtrsim
1/(\beta) \approx 800. Here we propose a technique which consists of deboosting
the CMB temperature in the time-ordered data and show that it extends the
validity of the perturbation analysis multipoles up to \ell \sim 10000. We also
obtain accurate fitting functions for the mixing between multipoles valid in a
full non-linear treatment. Finally we forecast the achievable precision with
which these correlations can be measured in a number of current and future CMB
missions. We show that Planck could measure the velocity with a precision of
around 60 km/s, ACTPol in 4 years around 40 km/s, while proposed future
experiments could further shrink this error bar by over a factor of around 2.Comment: 14 pages, 7 figures. Revised projections for ACTPol, SPTPol and
ACBAR; included projections for BICEP2; extended conclusions; typos correcte
First observation of the decay and a measurement of the ratio of branching fractions
The first observation of the decay using
data collected by the LHCb detector at a centre-of-mass energy of 7 TeV,
corresponding to an integrated luminosity of 36 pb, is reported. A
signal of events is obtained and the absence of signal is
rejected with a statistical significance of more than nine standard deviations.
The branching fraction is measured relative to
that of : , where the first uncertainty is statistical, the second systematic and
the third is due to the uncertainty on the ratio of the and
hadronisation fractions.Comment: 10 pages, 3 figures, submitted to Phys. Lett. B; ISSN 0370-269
Ultra-High Energy Cosmic Ray Probes of Large Scale Structure and Magnetic Fields
We study signatures of a structured universe in the multi-pole moments,
auto-correlation function, and cluster statistics of ultra-high energy cosmic
rays above 10^19 eV. We compare scenarios where the sources are distributed
homogeneously or according to the baryon density distribution obtained from a
cosmological large scale structure simulation. The influence of extragalactic
magnetic fields is studied by comparing the case of negligible fields with
fields expected to be produced along large scale shocks with a maximal strength
consistent with observations. We confirm that strongly magnetized observers
would predict considerable anisotropy on large scales, which is already in
conflict with current data. In the best fit scenario only the sources are
strongly magnetized, although deflection can still be considerable, of order 20
degrees up to 10^20 eV, and a pronounced GZK cutoff is predicted. We then
discuss signatures for future large scale full-sky detectors such as the Pierre
Auger and EUSO projects. Auto-correlations are sensitive to the source density
only if magnetic fields do not significantly affect propagation. In contrast,
for a weakly magnetized observer, degree scale auto-correlations below a
certain level indicate magnetized discrete sources. It may be difficult even
for next generation experiments to distinguish between structured and
unstructured source distributions.Comment: 17 revtex pages, 29 ps figures, published version with minor changes,
see http://link.aps.org/abstract/PRD/v70/e04300
- …